351
Views
21
CrossRef citations to date
0
Altmetric
Research Articles

Corrosion and mechanical behaviour of biodegradable PLA-cellulose nanocomposite coating on AZ31 magnesium alloy

, ORCID Icon & ORCID Icon
Pages 236-245 | Received 10 Mar 2020, Accepted 10 May 2020, Published online: 15 Jun 2020

References

  • Afrah AH, Smith R, Gauthier ER, et al. Investigation of a cyanine dye assay for the evaluation of the biocompatibility of magnesium alloys by direct and indirect methods. Bioact Mater. 2020;5:26–33. doi: 10.1016/j.bioactmat.2019.12.002
  • Shahin M, Munir K, Wen C, et al. Magnesium-based composites reinforced with graphene nanoplatelets as biodegradable implant materials. J Alloys Compd. 2020;828:154461. doi: 10.1016/j.jallcom.2020.154461
  • Liang Y, Luan X, Liu X. Recent advances in periodontal regeneration: a biomaterial perspective. Bioact Mater. 2020;5:297–308. doi: 10.1016/j.bioactmat.2020.02.012
  • Schon M, Fini M, Giavaresi G, et al. In vivo preclinical efficacy of a PDLLA/PGA porous copolymer for dental application. J Biomed Mater Res B. 2009;88(2):349–357. doi: 10.1002/jbm.b.31062
  • Ifkovits JL, Burdick JA. Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 2007;13(10):2369–2385. doi: 10.1089/ten.2007.0093
  • Hornberger H, Virtanen S, Boccaccini A. Biomedical coatings on magnesium alloys – a review. Acta Biomater. 2012;8(7):2442–2455. doi: 10.1016/j.actbio.2012.04.012
  • Shuai C, Wang B, Bin S, et al. Interfacial strengthening by reduced graphene oxide coated with MgO in biodegradable Mg composites. Mater Design. 2020;191:108612. doi: 10.1016/j.matdes.2020.108612
  • Jana A, Das M, Balla VK. Effect of heat treatment on microstructure, mechanical, corrosion and biocompatibility of Mg-Zn-Zr-Gd-Nd alloy. J Alloys Compd. 2020;821:153462. doi: 10.1016/j.jallcom.2019.153462
  • Erbel R, Mario CD, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet. 2007;369(9576):1869–1875. doi: 10.1016/S0140-6736(07)60853-8
  • Bertuola M, Minan A, Grillo CA, et al. Corrosion protection of AZ31 alloy and constrained bacterial adhesion mediated by a polymeric coating obtained from a phytocompound. Colloids Surf B Biointerfaces. 2018;172:187–196. doi: 10.1016/j.colsurfb.2018.08.025
  • Yang K, Lin X. Biocompatibility of surface-modified magnesium and magnesium alloys. In: Sankara Narayanan TSN, Il-Park S, Lee MH, editors. Surface modification of magnesium and its alloys for biomedical applications. Cambridge: Woodhead Publishing; 2015. p. 231–260. doi: 10.1016/B978-1-78242-077-4.00007-3
  • Xu L, Zhang E, Yang K. Phosphating treatment and corrosion properties of Mg–Mn–Zn alloy for biomedical application. J Mater Sci Mater Med. 2009;20(4):859–867. doi: 10.1007/s10856-008-3648-2
  • Tian P, Liu X. Surface modification of biodegradable magnesium and its alloys for biomedical applications. Regen Biomater. 2015;2(2):135–151. doi: 10.1093/rb/rbu013
  • Li LY, Cui LY, Zeng RC, et al. Advances in functionalized polymer coatings on biodegradable magnesium alloys – a review. Acta Biomater. 2018;79:23–36. doi: 10.1016/j.actbio.2018.08.030
  • Lenz RW. Biodegradable polymers. In: Langer RS, Peppas NA, editors. Biopolymers I. Advances in polymer science. Berlin: Springer; 1993. p. 1–40. doi: 10.1007/BFb0027550
  • Chen Y, Song Y, Zhang S, et al. Interaction between a high purity magnesium surface and PCL and PLA coatings during dynamic degradation. Biomed Mater. 2011;6(2):025005. doi: 10.1088/1748-6041/6/2/025005
  • Prabhu DB, Gopalakrishnan P, Ravi K. Coatings on implants: study on similarities and differences between the PCL coatings for Mg based lab coupons and final components. Mater Design. 2017;135:397–410. doi: 10.1016/j.matdes.2017.09.043
  • Li CY, Yu C, Zeng RC, et al. In vitro corrosion resistance of a Ta2O5 nanofilm on MAO coated magnesium alloy AZ31 by atomic layer deposition. Bioact Mater. 2020;5(1):34–43. doi: 10.1016/j.bioactmat.2019.12.001
  • Ma J, Thompson M, Zhao N, et al. Similarities and differences in coatings for magnesium-based stents and orthopaedic implants. J Orthop Transl. 2014;2(3):118–130.
  • Zhao J, Chen LJ, Yu K, et al. Effects of chitosan coating on biocompatibility of Mg–6%Zn–10%Ca3(PO4)2 implant. Trans Nonferrous Met Soc China. 2015;25(3):824–831. doi: 10.1016/S1003-6326(15)63669-X
  • Ullah H, Wahid F, Santos HA, et al. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym. 2016;150:330–352. doi: 10.1016/j.carbpol.2016.05.029
  • Brinchi L, Cotana F, Fortunati E, et al. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym. 2013;94(1):154–169. doi: 10.1016/j.carbpol.2013.01.033
  • Győri E, Fábián I, Lázár I. Effect of the chemical composition of simulated body fluids on aerogel-based bioactive composites. J Compos Sci. 2017;1(2):15. doi: 10.3390/jcs1020015
  • Molavi FK, Ghasemi I, Messori M, et al. Nanocomposites based on poly (L-lactide)/poly (ε-caprolactone) blends with triple-shape memory behavior: effect of the incorporation of graphene nanoplatelets (GNps). Compos Sci Technol. 2017;151:219–227. doi: 10.1016/j.compscitech.2017.08.021
  • Li W, Li L, Cao Y, et al. Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple. Nanomaterials. 2017;7(8):207. doi: 10.3390/nano7080207
  • Keshk SMAS, Yahia IS. Physicochemical characterization of different cellulose polymorphs/graphene oxide composites and their antibacterial activity. Turk J Chem. 2018;42(2):562–571.
  • Zhang W, Chen Y, Chen M, et al. Strengthened corrosion control of poly (lactic acid)(PLA) and poly (ε-caprolactone)(PCL) polymer-coated magnesium by imbedded hydrophobic stearic acid (SA) thin layer. Corros Sci. 2016;112:327–337. doi: 10.1016/j.corsci.2016.07.027
  • Molavi FK, Ghasemi I, Messori M, et al. Design and characterization of novel potentially biodegradable triple-shape memory polymers based on immiscible poly(L-lactide)/poly(ϵ-caprolactone) Blends. J Polym Environ. 2019;27:632–642. doi: 10.1007/s10924-019-01366-6
  • Lasprilla AJR, Martinez GAR, Hoss B. Synthesis and characterization of poly (lactic acid) for use in biomedical field. Chem Eng. 2011;24:985–990.
  • Bodirlau R, Teaca C. Fourier transform infrared spectroscopy and thermal analysis of lignocellulose fillers treated with organic anhydrides. Rom J Phys. 2009;54(1–2):93–104.
  • Pashaei S, Hosseinzadeh S, Hosseinzadeh H. TGA investigation and morphological properties study of nanocrystalline cellulose/ag-nanoparticles nanocomposites for catalytic control of oxidative polymerization of aniline. Polym Compos. 2019;40(S1):753–764. doi: 10.1002/pc.25000
  • Fortunati E, Peltzer M, Armentano I, et al. Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym. 2012;90(2):948–956. doi: 10.1016/j.carbpol.2012.06.025
  • Bartell F, Ray BR. Wetting characteristics of cellulose derivatives. I. contact angles formed by water and by organic liquids. J Am Chem Soc. 1952;74(3):778–783. doi: 10.1021/ja01123a058
  • Auclair N, Kaboorani A, Riedl B, et al. Influence of modified cellulose nanocrystals (CNC) on performance of bionanocomposite coatings. Prog Org Coat. 2018;123:27–34. doi: 10.1016/j.porgcoat.2018.05.027
  • Hassannejad H, Moghaddasi M, Saebnoori E, et al. Microstructure, deposition mechanism and corrosion behavior of nanostructured cerium oxide conversion coating modified with chitosan on AA2024 aluminum alloy. J. Alloys Compd. 2017;725:968–975. doi: 10.1016/j.jallcom.2017.07.253
  • Wang H, Estrin Y, Zúberová Z. Bio-corrosion of a magnesium alloy with different processing histories. Mater Lett. 2008;62(16):2476–2479. doi: 10.1016/j.matlet.2007.12.052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.