506
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Superhydrophobic silicone rubber surface prepared by direct replication

, , , , &
Pages 278-287 | Received 13 Feb 2020, Accepted 06 Apr 2020, Published online: 23 Jun 2020

References

  • Zhiwu H, Jia F, Ze W, et al. Long-term durability of superhydrophobic properties of butterfly wing scales after continuous contact with water. Colloid Surf A. 2017;518:139–144.
  • Jo SK. Dewetting dynamics on lotus leaves: adhesion-controlled droplet jumping. J Nanosci Nanotech. 2016;16(10):11058–11062.
  • Ying G, Qian X, Yi W, et al. Microstructures and grease layer of water strider and its influence on superhydrophobicity. Bioinspired Biomim Nanobiomaterials. 2018;7(1):44–52.
  • Yiping C, Hanwei W, Qiufang Y, et al. Biomimetic taro leaf-like films decorated on wood surfaces using soft lithography for superparamagnetic and superhydrophobic performance. J Mater Sci. 2017;52(12):7428–7438.
  • Kangchen N, Lulu X, Temeng Q, et al. Fabrication of a robust and flame-retardant alooh-lignocellulose composite with a lotus-leaf-like superhydrophobic coating. J Wood Chem Technol. 2020;40(1):44–57.
  • Manatunga D, De S, Rohini M, et al. Double layer approach to create durable superhydrophobicity on cotton fabric using nano silica and auxiliary non fluorinated materials. Appl Surf Sci. 2016;360:777–788.
  • Hooda A, Goyat MS, Pandey JK, et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings. Prog Org Coat. 2020;142. DOI:10.1016/j.porgcoat.2020.105557.
  • Yanfeng H, Zaosheng L, Zhe C, et al. A green and facile method to fabricate superhydrophobic coatings. Surf Eng. 2019;35(5):435–439.
  • Gao S, Sun J, Liu P, et al. A robust polyionized hydrogel with an unprecedented underwater anti-crude-oil-adhesion property. Adv Mater. 2016;28(26):5307–5314.
  • Bin C, Zaosheng L, Fen G, et al. Integrated CNTs/SiO2 nano-additives on SBS polymeric superhydrophobic coatings for self-cleaning. Surf Eng. 2019;36(6):601–606.
  • Howell C, Grinthal A, Sunny S, et al. Designing liquid-infused surfaces for medical applications: a review. Adv Mater. 2018;30(50):e1802724.
  • Amini S, Kolle S, Petrone L, et al. Preventing mussel adhesion using lubricant-infused materials. Science. 2017;357(6352):668–673.
  • Wang W, Lu Y, Zhu H, et al. Superdurable coating fabricated from a double-sided tape with long term “zero” bacterial adhesion. Adv Mater. 2017;29(34). DOI:10.1002/adma.201606506.
  • Ware C, Smith-Palmer T, Peppou-Chapman S, et al. Marine anti-fouling behavior of lubricant-infused nanowrinkled polymeric surfaces. ACS Appl Mater Inter. 2018;10:4173–4182.
  • Hao G, Yue X, Hua Y, et al. Improving the anti-icing performance of superhydrophobic surfaces by nucleation inhibitor. Surf Eng. 2020;36(6):621–627.
  • Guo Z, Qi L. Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces. J Mater Chem A. 2018;6(28):13549–13581.
  • Kangnan F, Zhuji J, Xianglong Z, et al. A facile electrochemical machining process to fabricate superhydrophobic surface on iron materials and its applications in anti-icing. J Disper Sci Technol. 2019. DOI:10.1080/01932691.2019.1699429.
  • Yan L, Mingyan L. Corrosion and fouling behaviours of copper-based superhydrophobic coating. Surf Eng. 2019;35(6):542–549.
  • Zang D, Zhu R, Zhang W, et al. Corrosion resistance: corrosion-resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod. Adv Funct Mater. 2017;27(8). DOI:10.1002/adfm.201605446.
  • Gao X, Zhou J, Du R, et al. Robust superhydrophobic foam: a graphdiyne-based hierarchical architecture for oil/water separation. Adv Mater. 2016;28(1):168–173.
  • Jichao Z, Xin L, Faze C, et al. An environmentally friendly and cost-effective method to fabricate superhydrophobic PU sponge for oil/water separation. J Disper Sci Technol. 2019. DOI:10.1080/01932691.2019.1614458.
  • Tie L, Li J, Liu M, et al. Dual superlyophobic surfaces with superhydrophobicity and underwater superoleophobicity. J Mater Chem A. 2018;6(25):11682–11687.
  • Tan Y, Hu B, Chu Z, et al. Bioinspired superhydrophobic papillae with tunable adhesive force and ultralarge liquid capacity for microdroplet manipulation. Adv Funct Mater. 2019;29(15). DOI:10.1002/adfm.201900266.
  • Yang Y, Li X, Zheng X, et al. Superhydrophobicity: 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv Mater. 2018;30(9). DOI:10.1002/adma.201704912.
  • He M, Wang P, Xu B, et al. The flexible conical lamella: a bio-inspired open system for the controllable liquid manipulation. Adv Funct Mater. 2018;28(49). DOI:10.1002/adfm.201800187.
  • Yali W, Jiapeng W, Dongguang Z, et al. Preparation and characterization of superhydrophobic surface based on polydimethylsiloxane (PDMS). J Adhes Sci Technol. 2019;33(17):1870–1881.
  • Xinyan X, Wei X, Zhihao Y. Preparation of corrosion-resisting superhydrophobic surface on aluminium substrate. Surf Eng. 2019;35(5):411–417.
  • Weitian X, Peiyun Y, Jie G, et al. Large-area stable superhydrophobic poly(dimethylsiloxane) films fabricated by thermal curing via a chemically etched template. ACS Appl Mater Inter. 2020;12(2):3042–3050.
  • Dongmei L, Li S, Jingping W, et al. Bioinspired hierarchically hairy particles for robust superhydrophobic coatings via a droplet dynamic template method. Polym Chem. 2019;10(3):331–335.
  • Junfei O, Bo W, Fajun W, et al. Textile with janus wetting properties via copper deposition and subsequent chemical vapor deposition of 1-dodecanethiol. Mater Lett. 2019;251:5–7.
  • Kundu D, Banerjee D, Ghosh S, et al. Plasma enhanced chemical vapour deposited amorphous carbon coating for hydrophobicity enhancement in commercial cotton fabrics. Physica E. 2019;114. DOI:10.1016/j.physe.2019.113594.
  • Xu L, Tong F, Lu X, et al. Multifunctional polypyrene/silica hybrid coatings with stable excimer fluorescence and robust superhydrophobicity derived from electrodeposited polypyrene films. J Mater Chem C. 2015;3(9):2086–2092.
  • Huang Y, Sarkar D, Chen X. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process. Appl Surf Sci. 2015;327:327–334.
  • Qianwen S, Jinyao Z, Lizhi Z. Fouling resistance improvement with a new superhydrophobic electrospun PVDF membrane for seawater desalination. Desalination. 2020;476. DOI:10.1016/j.desal.2019.114246.
  • Lee S, Kim B, Kim S, et al. Superhydrophobic, reversibly elastic, moldable, and electrospun (SupREME) fibers with multimodal functions: from oil absorbents to local drug delivery adjuvants. Adv Funct Mater. 2017;27(37). DOI:10.1002/adfm.201702310.
  • Zongzheng Z, Zhenghao L, Yuanyuan H, et al. Superhydrophobic copper surface fabricated by one-step immersing method in fatty acid salt aqueous solution for excellent anti-corrosion and oil/water separation properties. Appl Phy A. 2019;125(8):1–8.
  • Poonam C, Aditya K, Bharat B. Self-cleaning, stain-resistant and anti-bacterial superhydrophobic cotton fabric prepared by simple immersion technique. J Colloid Interf Sci. 2019;535:66–74.
  • Mendoza A, Moriana R, Hillborg H, et al. Super-hydrophobic zinc oxide/silicone rubber nanocomposite surfaces, surface. Interface. 2019;14:146–157.
  • Song Z, Wei L, Wei W, et al. Reactive superhydrophobic paper from one-step spray-coating of cellulose-based derivative. Appl Surf Sci. 2019;497. DOI:10.1016/j.apsusc.2019.143816.
  • Nanlin Y, Xinyan X, Guangming P. A stearic acidified-ZnO/methyl polysiloxane/PDMS superhydrophobic coating with good mechanical durability and physical repairability. J Dsper Sci Technol. 2019;40(11):1548–1558.
  • Yong J, Chen F, Yang Q, et al. controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays. Langmuir. 2013;29(10):3274–3279.
  • Cheng Z, Zhang D, Lv T, et al. Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting. Adv Funct Mater. 2017;28(7). DOI:10.1002/adfm.201705002.
  • Song Y, Yu J, Yu L, et al. Enhancing the thermal, electrical, and mechanical properties of silicone rubber by addition of graphene nanoplatelets. Mater Design. 2015;88:950–957.
  • Wang S, Yao X, Yang H, et al. A new leakage measurement method for damaged seal material. Meas Sci Technol. 2018;29(7). DOI:10.1088/1361-6501/aac15f.
  • Wang J, Ji C, Yan Y, et al. Mechanical and ceramifiable properties of silicone rubber filled with different inorganic fillers. Polym Degrad Stabil. 2015;121:149–156.
  • Yang H, Yao X, Zheng Z, et al. Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing. Compos Sci Technol. 2018;167:371–378.
  • Wu J, Dong J, Wang Y, et al. Thermal oxidation ageing effects on silicone rubber sealing performance. Polym Degrad Stabil. 2017;135:43–53.
  • He Q, Wang G, Zhang Y, et al. Thermo-oxidative ageing behavior of cerium oxide/silicone rubber. J Rare Earth. 2019;38(4):436–444.
  • Yang H, Yao X, Ke Y, et al. Constitutive behaviors and mechanical characterizations of fabric reinforced rubber composites. Compos Struct. 2016;152:117–123.
  • Sarkarat M, Lanagan M, Ghosh D, et al. High field dielectric properties of clay filled silicone rubber composites. Mater Today Commun. 2020;23:100947.
  • Yang H, Yao X, Yan H, et al. Anisotropic hyper-viscoelastic behaviors of fabric reinforced rubber composites. Compos Struct. 2018;187:116–121.
  • Han R, Wang Z, Zhang Y, et al. Thermal stability of CeO2/graphene/phenyl silicone rubber composites. Polym Test. 2019;75:277–283.
  • Wang F, Yu S, Ou J. Mechanically durable superhydrophobic surfaces prepared by abrading. J Appl Phys. 2013;114(12). DOI:10.1063/1.4822028.
  • Chen L, Wang X, Yang T, et al. Superhydrophobic micro-nano structures on silicone rubber by nanosecond laser processing. J Phys D Appl Phys. 2018;51(44). DOI:10.1088/1361-6463/aae13d.
  • Maghsoudi K, Momen G, Jafari R, et al. Direct replication of micro-nanostructures in the fabrication of superhydrophobic silicone rubber surfaces by compression molding. Appl Surf Sci. 2018;458:618–628.
  • Masayuki O. Fabrication of superhydrophobic silicone rubber operating in water. Appl Phys Express. 2018;11(10):101801.
  • Zhang K, Han Q, Liu C, et al. Superhydrophobic and superparamagnetic composite coatings: a comparative study on dual-sized functional magnetite nanoparticles/silicone rubber. J Inorg Organomet. 2017;27(6):1816–1825.
  • Cassie A, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40:546–551.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.