526
Views
4
CrossRef citations to date
0
Altmetric
Review

Surface modification during hydroxyapatite powder mixed electric discharge machining of metallic biomaterials: a review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 680-706 | Received 20 Jul 2022, Accepted 01 Dec 2022, Published online: 26 Dec 2022

References

  • Festas AJ, Ramos A, Davim JP. Medicals devices biomaterials – a review. Proc Inst Mech Eng L J Mater Des Appl. 2020;234(1):218–228.
  • Adawy A, Abdel-Fattah WI. An efficient biomimetic coating methodology for a prosthetic alloy. Mater Sci Eng C. 2013;33(3):1813–1818.
  • Su Y, Luo C, Zhang Z, et al. Bioinspired surface functionalization of metallic biomaterials. J Mech Behav Biomed Mater. 2018;77:90–105.
  • Kaviya M, Ramakrishnan P, Mohamed SB, et al. Synthesis and characterization of nano-hydroxyapatite/graphene oxide composite materials for medical implant coating applications. Mater Today Proc. 2021;36:204–207.
  • Sáenz A, Rivera E, Brostow W, et al. Ceramic biomaterials: an introductory overview. J Mater Educ. 1999;21:267–276.
  • Mitsuishi M, Cao J, Bártolo P, et al. Biomanufacturing. CIRP Ann. 2013;62:585–606.
  • Ratner BD, Hoffman AS, Schoen FJ, et al. Introduction—biomaterials science: an evolving, multidisciplinary endeavor. In: Wagner W, Sakiyama-Elbert S, Zhang G, et al., editors. Biomaterials science: an introduction to materials in medicine. Oxford: Academic Press; 2013. p. 3–19.
  • Rani AM, Fua-Nizan R, Din MY. Manufacturing methods for medical artificial prostheses – a review. Mal J Fund Appl Sci J Med Device. 2017:464–469. doi:10.11113/mjfas.v13n4-2.772.
  • Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8(11):3888–3903.
  • Patel NR, Gohil PP. A review on biomaterials: scope, applications and human anatomy significance. Int J Emerg Technol Adv Eng. 2012;2(4):91–101.
  • Ratner BD, Hoffman AS, Schoen FJ, et al. Biomaterials science: an introduction to materials in medicine. San Diego (CA): Elsevier Academic Press; 2004. p. 162–164.
  • Geetha M, Singh AK, Asokamani R, et al. Ti-based biomaterials, the ultimate choice for orthopedic implants – review. Prog Mater Sci. 2009;54(3):397–425.
  • Navarro M, Michiardi A, Castaño O, et al. Biomaterials in orthopaedics. JR Soc Interface. 2008;5(27):1137–1158.
  • Asri RI, Harun WS, Samykano M, et al. Corrosion and surface modification on biocompatible metals: a review. Mater Sci Eng C. 2017;77:1261–1274.
  • Khorasani AM, Goldberg M, Doeven EH, et al. Titanium in biomedical applications—properties and fabrication: a review. J Biomater Tissue Eng. 2015;5(8):593–619.
  • Pires AL, Bierhalz AC, Moraes AM. Biomaterials: types, applications, and market. Quim Nova. 2015;38:957–971.
  • Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R Rep. 2015;87:1–57.
  • Popescu ŞC, Gheorghe GI, Donţu O, et al. Some problems biocompatible materials used for making endoprostheses ankle. In: Gheorghe G, editor. Proceedings of the International Conference of Mechatronics and Cyber-MixMechatronics – 2017. ICOMECYME 2017. Lecture notes in networks and systems. Vol 20. Cham: Springer; 2018. doi:10.1007/978-3-319-63091-5_12.
  • Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2002;33(3):477–486.
  • Pandey A, Awasthi A, Saxena KK. Metallic implants with properties and latest production techniques: a review. Adv Mater Process Technol. 2020;6(2):405–440.
  • Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1(1):30–42.
  • Roach P, Eglin D, Rohde K, et al. Modern biomaterials: a review-bulk properties and implications of surface modifications. J Mater Sci Mater Med. 2007;18(7):1263–1277.
  • Baino F, Potestio I. Orbital implants: state-of-the-art review with emphasis on biomaterials and recent advances. Mater Sci Eng C. 2016;69:1410–1428.
  • King A, Phillips JR. Total hip and knee replacement surgery. Surgery (Oxford). 2016;34(9):468–474.
  • Huynh V, Ngo NK, Golden TD. Surface activation and pretreatments for biocompatible metals and alloys used in biomedical applications. Int J Biomater. 2019;2019. doi:10.1155/2019/3806504.
  • Prakash C, Kansal HK, Pabla BS, et al. Electric discharge machining – a potential choice for surface modification of metallic implants for orthopedic applications: a review. Proc Inst Mech Eng B J Eng Manuf. 2016;230(2):331–353.
  • Yadav A, Mohanty S, Dwivedi S, et al. Selective surface modification of SS304 using hybrid powder-mixed EDC process. Surf Eng. 2022;38(1):8–21.
  • Kumar SS, Varol T, Canakci A, et al. A review on the performance of the materials by surface modification through EDM. Int J Lightweight Mater Manuf. 2021;4(1):127–144.
  • Mazarbhuiya RM, Rahang M. Electric discharge coating on graphite using W–Cu sintered tool. Surf Eng. 2022;38(3):252–260.
  • Huzum B, Puha B, Necoara RM, et al. Biocompatibility assessment of biomaterials used in orthopedic devices: an overview. Exp Ther Med. 2021;22(5):1–9.
  • Su Y, Zheng Y, Tang L, et al. Calcium phosphate coatings for metallic orthopedic biomaterials. In: Li B, Webster T, editors. Orthopedic biomaterials. Cham: Springer; 2017. p. 167–183
  • Hermawan H, Dubé D, Mantovani D. Developments in metallic biodegradable stents. Acta Biomater. 2010;6(5):1693–1697.
  • Davis JR. Handbook of materials for medical devices. 1st ed. Geauga: ASM; 2003. Chapter 3, Metallic materials; p. 22–30.
  • Bothe RT. Reaction of bone to multiple metallic implants. Surg Gynecol Obstet. 1940;71:598–602.
  • Nasab MB, Hassan MR, Sahari BB. Metallic biomaterials of knee and hip – a review. Trends Biomater Artif Organs. 2010;24(1):69–82.
  • Antunes RA, de Oliveira MC. Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation. Acta Biomater. 2012;8(3):937–962.
  • Singh R, Dahotre NB. Corrosion degradation and prevention by surface modification of biometallic materials. J Mater Sci Mater Med. 2007;18(5):725–751.
  • Shuai C, Li S, Peng S, et al. Biodegradable metallic bone implants. Mater Chem Front. 2019;3(4):544–562.
  • Godwin G, Jaisingh SJ, Priyan MS, et al. Wear and corrosion behaviour of Ti-based coating on biomedical implants. Surf Eng. 2021;37(1):32–41.
  • Likibi F, Assad M, Coillard C, et al. Bone integration and apposition of porous and non-porous metallic orthopaedic biomaterials. Ann Chir Plast Esthet. 2005;130(4):235–241.
  • Yang K, Zhou C, Fan H, et al. Bio-functional design, application and trends in metallic biomaterials. Int J Mol Sci. 2017;19(1):24.
  • Sun ZL, Wataha JC, Hanks CT. Effects of metal ions on osteoblast-like cell metabolism and differentiation. J Biomed Mater Res. 1997;34(1):29–37.
  • Ivanova EP, Bazaka K, Crawford RJ. New functional biomaterials for medicine and healthcare. Vol. 67. New Delhi: Woodhead; 2014. p. 32–70.
  • Disegi JA, Eschbach L. Stainless steel in bone surgery. Injury. 2000;4:2–6.
  • Walczac J, Shahgaldi F, Heartley F. In vivo corrosion of 316L stainless-steel hip implants: morphology and elemental compositions of corrosion products. Biomaterials. 1998;19:229–237.
  • Muley SV, Vidvans AN, Chaudhari GP, et al. An assessment of ultra fine grained 316L stainless steel for implant applications. Acta Biomater. 2016;30:408–419.
  • Shahin M, Munir K, Wen C, et al. Magnesium matrix nanocomposites for orthopedic applications: a review from mechanical, corrosion, and biological perspectives. Acta Biomater. 2019;96:1–9.
  • Shahin M, Munir K, Wen C, et al. Magnesium-based composites reinforced with graphene nanoplatelets as biodegradable implant materials. J Alloys Compd. 2020;828:154461.
  • Gu XN, Zheng YF. A review on magnesium alloys as biodegradable materials. Front Mater Sci China. 2010;4(2):111–115.
  • Yoda K, Takaichi A, Nomura N, et al. Effects of chromium and nitrogen content on the microstructures and mechanical properties of as-cast Co–Cr–Mo alloys for dental applications. Acta Biomater. 2012;8(7):2856–2862.
  • Aherwar A, Singh AK, Patnaik A. Cobalt based alloy: a better choice biomaterial for hip implants. Trends Biomater Artif Organs. 2016;30(1):50–55.
  • Hedberg YS, Qian B, Shen Z, et al. In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting. Dent Mater J. 2014;30(5):525–534.
  • Li Y, Yang C, Zhao H, et al. New developments of Ti-based alloys for biomedical applications. J Mater. 2014;7(3):1709–1800.
  • Biesiekierski A, Wang J, Gepreel MA, et al. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012;8(5):1661–1669.
  • Patel B, Inam F, Reece M, et al. A novel route for processing cobalt–chromium–molybdenum orthopaedic alloys. J R Soc Interface. 2010;7(52):1641–1645.
  • Ottman N, Ruokolainen L, Suomalainen A, et al. Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J Allergy Clin Immunol. 2019;143(3):1198–1206.
  • Hermawan H, Ramdan D, Djuansjah JR. Metals for biomedical applications. Theory Appl. 2011;1:411–430.
  • Zardiackas LD. Stainless steels for implants. Wiley encyclopedia of biomedical engineering. Willey Online Library; 2006.
  • Elias CN, Fernandes DJ, de Souza FM, et al. Mechanical and clinical properties of titanium and titanium-based alloys (Ti G2, Ti G4 cold worked nanostructured and Ti G5) for biomedical applications. J Mater Res Technol. 2019;8(1):1060–1069.
  • Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A. 1998;243(1–2):231–236.
  • Özkurt Z, Kazazoğlu E. Zirconia dental implants: a literature review. J Oral Implantology. 2011;37(3):367–376.
  • Saini M, Singh Y, Arora P, et al. Implant biomaterials: a comprehensive review. World J Clin Cases. 2015;3(1):52.
  • Tschernitschek H, Borchers L, Geurtsen W. Nonalloyed titanium as a bioinert metal – a review. Quintessence Int. 2005;36(7):523–530.
  • Marti A. Cobalt-base alloys used in bone surgery. Injury. 2000;31:D18–D21.
  • Meagher P, O'Cearbhaill ED, Byrne JH, et al. Bulk metallic glasses for implantable medical devices and surgical tools. Adv Mater. 2016;28(27):5755–5762.
  • Han K, Qiang J, Wang Y, et al. Zr-Al-Co-Cu bulk metallic glasses for biomedical devices applications. J Alloys Compd. 2017;729:144–149.
  • Liu L, Liu Z, Chan KC, et al. Surface modification and biocompatibility of Ni-free Zr-based bulk metallic glass. Scr Mater. 2008;58(3):231–234.
  • Davis R, Singh A, Jackson MJ, et al. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. Int J Adv Manuf Technol. 2022;120:1–58.
  • Razak MA, Abdul-Rani AM, Rao TV, et al. Electrical discharge machining on biodegradable AZ31 magnesium alloy using Taguchi method. Procedia Eng. 2016;148:916–922.
  • Abdul-Rani AM, Nanimina AM, Ginta TL, et al. Machined surface quality in nano aluminum mixed electrical discharge machining. Procedia Manuf. 2017;7:510–517.
  • Khan W, Muntimadugu E, Jaffe M, et al. Implantable medical devices. In: Domb A, Khan W, editors. Focal controlled drug delivery. Advances in delivery science and technology. Boston (MA): Springer; 2014. p. 33–59.
  • Priyadarshini B, Rama M, Chetan, et al. Bioactive coating as a surface modification technique for biocompatible metallic implants: a review. J Asian Ceram Soc. 2019;7(4):397–406.
  • Katti KS. Biomaterials in total joint replacement. Colloids Surf B. 2004;39(3):133–142.
  • Singh R, Singh S, Hashmi MS. Implant materials and their processing technologies; 2016.
  • Aliyu AA, Abdul-Rani AM, Ginta TL, et al. A review of additive mixed-electric discharge machining: current status and future perspectives for surface modification of biomedical implants. Adv Mater Sci Eng. 2017;23:1–3.
  • Liu HT. Waterjet technology for machining fine features pertaining to micromachining. J Manuf Process. 2010;12(1):8–18.
  • Al-Amin M, Abdul Rani AM, Abdu Aliyu AA, et al. Powder mixed-EDM for potential biomedical applications: a critical review. Mater Manuf Process. 2020;35(16):1789–1811.
  • Zheng Z, Zhao MC, Tan L, et al. Biodegradation behaviour of hydroxyapatite-containing self-sealing micro-arc-oxidation coating on pure Mg. Surf Eng. 2021;37(7):942–952.
  • Zheng X, Liu Q, Ma H, et al. Probing local corrosion performance of sol-gel/MAO composite coating on Mg alloy. Surf Coat Technol. 2018;347:286–296.
  • Fang Z, He W, Chen J, et al. Crack resistance enhancement of gradient bias TiN/Ti multilayer coating by Ti sputtering. Surf Eng. 2021;37(11):1457–1466.
  • Zuleta AA, Correa E, Castaño JG, et al. Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy. Surf Coat Technol. 2017;321:309–320.
  • Lin B, Zhong M, Zheng C, et al. Preparation and characterization of dopamine-induced biomimetic hydroxyapatite coatings on the AZ31 magnesium alloy. Surf Coat Technol. 2015;281:82–88.
  • Zhao Y, Kong W, Jin Z, et al. Storing solar energy within Ag-Paraffin@ Halloysite microspheres as a novel self-heating catalyst. Appl Energy. 2018;222:180–188.
  • Chandra S, Hooda S, Tomar PK, et al. Synthesis and characterization of bis nitrato [4-hydroxyacetophenonesemicarbazone) nickel (II) complex as ionophore for thiocyanate-selective electrode. Mater Sci Eng C. 2016;62:18–27.
  • Liu F, Ji Y, Meng Q, et al. Microstructure and corrosion resistance of laser cladding and friction stir processing hybrid modification Al-Si coatings on AZ31B. Vacuum. 2016;133:31–37.
  • Ackerl N, Warhanek M, Gysel J, et al. Ultrashort-pulsed laser machining of dental ceramic implants. J Eur Ceram Soc. 2019;39(4):1635–1641.
  • Finazzi V, Demir AG, Biffi CA, et al. Design and functional testing of a novel balloon-expandable cardiovascular stent in CoCr alloy produced by selective laser melting. J Manuf Process. 2020;55:161–173.
  • Kumar S, Kumar R. Influence of processing conditions on the properties of thermal sprayed coating: a review. Surf Eng. 2021;37(11):1339–1372.
  • Borthakur S, Talukdar N, Neog NK, et al. Plasma surface interaction of nitrogen plasma on AISI 304 steel. Surf Eng. 2020;36(5):498–507.
  • Khater MA, Bouaziz SA, Garrido MA, et al. Mechanical and tribological behaviour of titanium boride coatings processed by thermochemicals treatments. Surf Eng. 2021;37(1):101–110.
  • Jahan MP, Alavi F, Kirwin R, et al. Micro-EDM induced surface modification of titanium alloy for biocompatibility. Int J Mach Mach Mater. 2018;20(3):274–298.
  • Otsuka F, Kataoka Y, Miyazaki T. Enhanced osteoblast response to electrical discharge machining surface. Dent Mater J. 2012;31(2):309–315.
  • Klocke F, Schwade M, Klink A, et al. Influence of electro discharge machining of biodegradable magnesium on the biocompatibility. Procedia CIRP. 2013;5:88–93.
  • Joshi AY, Joshi AY. A systematic review on powder mixed electrical discharge machining. Heliyon. 2019;5(12):e02963.
  • Kolli M, Kumar A. Effect of boron carbide powder mixed into dielectric fluid on electrical discharge machining of titanium alloy. Procedia Manuf. 2014;5:1957–1965.
  • Stráský J, Janeček M, Harcuba P, et al. The effect of microstructure on fatigue performance of Ti–6Al–4V alloy after EDM surface treatment for application in orthopaedics. J Mech Behav Biomed Mater. 2011;4(8):1955–1962.
  • Chen SL, Lin MH, Huang GX, et al. Research of the recast layer on implant surface modified by micro-current electrical discharge machining using deionized water mixed with titanium powder as dielectric solvent. Appl Surf Sci. 2014;311:47–53.
  • Williams DF. Definitions in biomaterials: proceedings of a consensus conference of the European Society for Biomaterials. Chester: Elsevier Science limited; 1986. p. 4.
  • Hamdaoui S, Lambert A, Khireddine H, et al. An efficient and inexpensive method for functionalizing metallic biomaterials used in orthopedic applications. Colloids Interface Sci Commun. 2020;37:100282.
  • Nassif N, Ghayad I. Corrosion protection and surface treatment of magnesium alloys used for orthopaedic applications. Adv. Mater Sci Eng. 2013;2013:Article ID 532896.
  • Puleo DA, Huh WW. Acute toxicity of metal ions in cultures of osteogenic cells derived from bone marrow stromal cells. J Appl Biomater. 1995;6(2):109–116.
  • Eliaz N. Corrosion of metallic biomaterials: a review. J Mater. 2019;12(3):407.
  • Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys – a review. Acta Biomater. 2012;8(7):2442–2455.
  • Yin ZZ, Qi WC, Zeng RC, et al. Advances in coatings on biodegradable magnesium alloys. J Magnes Alloy. 2020;8(1):42–65.
  • Singha S, Singha G, Balab N. Introduction to biomaterials and surface modification techniques: a review. Int J Surf Eng. 2019;9.
  • Montazerian M, Hosseinzadeh F, Migneco C, et al. Bioceramic coatings on metallic implants: an overview. Ceram Int. 2022;48:8987–9005.
  • Vladescu A, Surmeneva MA, Cotrut CM, et al. Bioceramic coatings for metallic implants. In: Handbook of bioceramics and biocomposites. Springer International Publishing; 2016. p. 703–733.
  • Mahajan A, Sidhu SS. Surface modification of metallic biomaterials for enhanced functionality: a review. Mater Technol. 2018;33(2):93–105.
  • Chaijaruwanich A. Coating techniques for biomaterials: a review. Chiang Mai Univ J Nat Sci. 2011;10(1):39–50.
  • Przekora A. Current trends in fabrication of biomaterials for bone and cartilage regeneration: materials modifications and biophysical stimulations. Int J Mol Sci. 2019;20(2):435.
  • Nouri A, Wen C. 1 - Introduction to surface coating and modification for metallic biomaterials. In: Wen C, editor. Surface coating and modification of metallic biomaterials. Woodhead Publishing; 2015. p. 3–60.
  • Joy-anne NO, Su Y, Lu X, et al. Bioactive glass coatings on metallic implants for biomedical applications. Bioact Mater. 2019;4:261–270.
  • Antonio RF, Rangel EC, Mas BA, et al. Growth of hydroxyapatite coatings on tantalum by plasma electrolytic oxidation in a single step. Surf Coat Technol. 2019;357:698–705.
  • Coşkun Mİ, Karahan İH, Golden TD. Computer assisted corrosion analysis of hydroxyapatite coated CoCrMo biomedical alloys. Surf Coat Technol. 2015;275:e1–e9.
  • Fathi AM, Ahmed MK, Afifi M, et al. Taking hydroxyapatite-coated titanium implants two steps forward: surface modification using graphene mesolayers and a hydroxyapatite-reinforced polymeric scaffold. ACS Biomater Sci Eng. 2020;7(1):360–372.
  • Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, et al. Hydroxyapatite as a biomaterial – a gift that keeps on giving. Drug Dev Ind Pharm. 2020;46(7):1035–1062.
  • Nasar A. 8 - Hydroxyapatite and its coatings in dental implants. In: Asiri AM, Inamuddin, Mohammad A, editors. Woodhead publishing series in biomaterials, applications of nanocomposite materials in dentistry. Woodhead Publishing; 2019. p. 145–160.
  • Orinaková R, Orinak A, Kupková M, et al. In vitro degradatio. J Electrochem Sci. 2015;10:8158–8174.
  • D'Antonio JA, Capello WN, Manley MT, Geesink R. Hydroxyapatite femoral stems for total hip arthroplasty: 10- to 13-year followup. Clin Orthop Relat Res. 2001;393:101–111.
  • Geesink RG. Osteoconductive coatings for total joint arthroplasty. Clin Orthop Relat Res. 2002;395:53–65.
  • Qadir M, Li Y, Munir K, et al. Calcium phosphate-based composite coating by micro-arc oxidation (MAO) for biomedical application: a review. Crit Rev Solid State Mater Sci. 2018;43(5):392–416.
  • Bose S, Tarafder S, Bandyopadhyay A. Hydroxyapatite coatings for metallic implants. In: Hydroxyapatite (Hap) for biomedical applications. 2015. p. 143–157.
  • Bramowicz M, Braic L, Azem FA, et al. Mechanical properties and fractal analysis of the surface texture of sputtered hydroxyapatite coatings. Appl Surf Sci. 2016;379:338–346.
  • Beig B, Liaqat U, Niazi MF, et al. Current challenges and innovative developments in hydroxyapatite-based coatings on metallic materials for bone implantation: a review. Coatings. 2020;10(12):1249.
  • Dikici B, Esen Z, Duygulu O, et al. Corrosion of metallic biomaterials. In: Niinomi M, Narushima T, Nakai M, editors. Advances in metallic biomaterials. Springer series in biomaterials science and engineering. Vol. 3. Berlin: Springer; 2015. p. 275–303.
  • Etminanfar MR, Khalil-Allafi J, Sheykholeslami SO. The effect of hydroxyapatite coatings on the passivation behavior of oxidized and unoxidized superelastic nitinol alloys. J Mater Eng Perform. 2018;27(2):501–509.
  • Evcin A, Bohur BG. Coating of different silica sources containing hydroxyapatite for Ti6Al4V metal substrate using HVOF technique. Arab J Geosci. 2019;12(6):1–5.
  • Kumar A, Kargozar S, Baino F, et al. Additive manufacturing methods for producing hydroxyapatite and hydroxyapatite-based composite scaffolds: a review. Front Mater Sci. 2019;6:313.
  • Fornell J, Feng YP, Pellicer E, et al. Mechanical behaviour of brushite and hydroxyapatite coatings electrodeposited on newly developed FeMnSiPd alloys. J Alloys Compd. 2017;729:231–239.
  • Gokcekaya O, Webster TJ, Ueda K, et al. In vitro performance of Ag-incorporated hydroxyapatite and its adhesive porous coatings deposited by electrostatic spraying. Mater Sci Eng C. 2017;77:556–564.
  • Harun WS, Asri RI, Sulong AB, et al. Hydroxyapatite-based coating on biomedical implant. In: Thirumalai J, editor. Hydroxyapatite: advances in composite nanomaterials, biomedical applications and its technological facets. Rijeka: IntechOpen; 2018. p. 69–88.
  • Harun WS, Asri RI, Alias J, et al. A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceram Int. 2018;44(2):1250–1268.
  • Kannan MB. Hydroxyapatite coating on biodegradable magnesium and magnesium-based alloys. In: Mucalo M, editor. Hydroxyapatite (HAp) for biomedical applications. Woodhead publishing series in biomaterials. Vol. 95. Cambridge (UK): Elsevier; 2015. p. 289–306.
  • Liu X, He D, Zhou Z, et al. In vitro bioactivity and antibacterial performances of atmospheric plasma sprayed C-axis preferential oriented hydroxyapatite coatings. Surf Coat Technol. 2021;417:127209.
  • Luo J, Jia X, Gu R, et al. 316L stainless steel manufactured by selective laser melting and its biocompatibility with or without hydroxyapatite coating. Metals (Basel). 2018;8(7):548.
  • Kumar R, Mohanty S. Hydroxyapatite: a versatile bioceramic for tissue engineering application. J Inorg Organomet Polym. 2022. DOI:10.1007/s10904-022-02454-2
  • Mhaede M, Ahmed A, Wollmann M, et al. Evaluating the effects of hydroxyapatite coating on the corrosion behavior of severely deformed 316Ti SS for surgical implants. Mater Sci Eng C. 2015;50:24–30.
  • Mihailescu N, Stan GE, Duta L, et al. Structural, compositional, mechanical characterization and biological assessment of bovine-derived hydroxyapatite coatings reinforced with MgF2 or MgO for implants functionalization. Mater Sci Eng C. 2016;59:863–874.
  • Somasundaram S. Silane coatings of metallic biomaterials for biomedical implants: a preliminary review. J Biomed Mater Res B Appl Biomater. 2018;106(8):2901–2918.
  • Oskouei RH, Fallahnezhad K, Kuppusami S. An investigation on the wear resistance and fatigue behaviour of Ti-6Al-4V notched members coated with hydroxyapatite coatings. Materials (Basel). 2016;9(2):111.
  • Saber-Samandari S, Baradaran S, Nasiri-Tabrizi B, et al. Microstructural evolution and micromechanical properties of thermally sprayed hydroxyapatite coating. Adv Appl Ceram. 2018;117(8):452–460.
  • Sankar M, Suwas S, Balasubramanian S, et al. Comparison of electrochemical behavior of hydroxyapatite coated onto WE43 Mg alloy by electrophoretic and pulsed laser deposition. Surf Coat Technol. 2017;309:840–848.
  • Say Y, Aksakal B, Dikici B. Effect of hydroxyapatite/SiO2 hybride coatings on surface morphology and corrosion resistance of REX-734 alloy. Ceram Int. 2016;42(8):10151–8.
  • Schmidt R, Hoffmann V, Helth A, et al. Electrochemical deposition of hydroxyapatite on beta-Ti-40Nb. Surf Coat Technol. 2016;294:186–193.
  • Vladescu A, Braic M, Azem FA, et al. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings. Appl Surf Sci. 2015;354:373–379.
  • Abdulsada FW, Hammood AS. Characterization of corrosion and antibacterial resistance of hydroxyapatite/silver nano particles powder on 2507 duplex stainless steel. Mater Today Proc. 2021;42:2301–2307.
  • Ahmed Y, Rehman MA. Improvement in the surface properties of stainless steel via zein/hydroxyapatite composite coatings for biomedical applications. Surf Interfaces. 2020;20:100589.
  • Chen Y, Ren J, Sun Y, et al. Efficacy of graphene nanosheets on the plasma sprayed hydroxyapatite coating: improved strength, toughness and in-vitro bioperformance with osteoblast. Mater Des. 2021;203:109585.
  • Pang S, He Y, He P, et al. Fabrication of two distinct hydroxyapatite coatings and their effects on MC3T3-E1 cell behavior. Colloids Surf B Biointerfaces. 2018;171:40–48.
  • Popkov AV, Gorbach EN, Kononovich NA, et al. Bioactivity and osteointegration of hydroxyapatite-coated stainless steel and titanium wires used for intramedullary osteosynthesis. Strategies Trauma Limb Reconstr. 2017;12(2):107–113.
  • Stráský J, Havlíková J, Bačáková L, et al. Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants. Appl Surf Sci. 2013;281:73–78.
  • Hashim NL, Yahya A, Kadir MR, et al. Simulation of Micro—EDM servomotor for machining micro pits on hip implant. J Teknol. 2013;61(2):45–51.
  • Bucciotti F, Mazzocchi M, Bellosi A. Perspectives of the Si3N4-TiN ceramic composite as a biomaterial and manufacturing of complex-shaped implantable devices by electrical discharge machining (EDM). J Appl Biomater. 2010;8(1):28–32.
  • Kumar V, Beri N, Kumar A. Electric discharge machining of titanium and alloys for biomedical implant applications: a review. Int JR Anal Rev. 2018;5:2348–1269.
  • Öpöz TT, Yaşar H, Ekmekci N, et al. Particle migration and surface modification on Ti6Al4V in SiC powder mixed electrical discharge machining. J Manuf Process. 2018;31:744–758.
  • Laad ME, Jatti VS, Jadhav PP. Investigation into application of electrical discharge machining as a surface treatment process. WSEAS Trans Appl Theor Mech. 2014;9:245–251.
  • Chen YF, Lin YC. Surface modifications of Al–Zn–Mg alloy using combined EDM with ultrasonic machining and addition of TiC particles into the dielectric. J Mater Process Technol. 2009;209(9):4343–4350.
  • Havlikova J, Strasky J, Vandrovcova M, et al. Innovative surface modification of Ti–6Al–4V alloy with a positive effect on osteoblast proliferation and fatigue performance. Mater Sci Eng C. 2014;39:371–379.
  • Marashi H, Sarhan AA, Hamdi M. Employing Ti nano-powder dielectric to enhance surface characteristics in electrical discharge machining of AISI D2 steel. Appl Surf Sci. 2015;357:892–907.
  • Jain S, Parashar V. Critical review on the impact of EDM process on biomedical materials. Mater Manuf. 2021;36(15):1701–1724.
  • Kunieda M, Masuzawa T. A fundamental study on a horizontal EDM. CIRP Ann. 1988;37(1):187–190.
  • Nanimina AM, Rani AM, Ginta TL. Assessment of powder mixed EDM: a review. MATEC Web Conf. 2014;13:04018.
  • Xie ZJ, Mai YJ, Lian WQ, et al. Titanium carbide coating with enhanced tribological properties obtained by EDC using partially sintered titanium electrodes and graphite powder mixed dielectric. Surf Coat Technol. 2016;300:50–57.
  • Lee BE, Ho S, Mestres G, et al. Dual-topography electrical discharge machining of titanium to improve biocompatibility. Surf Coat Technol. 2016;296:149–156.
  • Mahmud N, Yahya A, Rafiq M, et al. Electrical discharge machining pulse power generator to machine micropits of hip implant. In: 2012 International Conference on Biomedical Engineering (ICoBE), Penang, Malaysia. IEEE; 2012. p. 493–497.
  • Yan BH, Chen SL. Characteristics of SKD11 by complex process of electrical discharge machining using liquid suspended with alumina powder. Nippon Kinzoku Gakkaishi (1952). 1994;58(9):1067–1072.
  • Talla G, Gangopadhayay S, Biswas CK. State of the art in powder-mixed electric discharge machining: a review. Proc Inst Mech Eng B J Eng Manuf. 2017;231(14):2511–2526.
  • Al-Amin M, Abdul-Rani AM, Danish M, et al. Assessment of PM-EDM cycle factors influence on machining responses and surface properties of biomaterials: a comprehensive review. Precis Eng. 2020;66:531–549.
  • Kumar S, Singh R, Singh TP, et al. Surface modification by electrical discharge machining: a review. J Mater Process Technol. 2009;209(8):3675–3687.
  • Al-Amin M, Abdul-Rani AM, Danish M, et al. Investigation of coatings, corrosion and wear characteristics of machined biomaterials through hydroxyapatite mixed-EDM process: a review. Mater. 2021;14(13):3597.
  • Prakash C, Singh S, Pruncu CI, et al. Surface modification of Ti-6Al-4V alloy by electrical discharge coating process using partially sintered Ti-Nb electrode. Mater. 2019;12(7):1006.
  • Sharma D, Mohanty S, Das AK. Surface modification of titanium alloy using hBN powder mixed dielectric through micro-electric discharge machining. Surf Coat Technol. 2020;381:125157.
  • Sidhu SS, Batish A, Kumar S. Study of surface properties in particulate-reinforced metal matrix composites (MMCs) using powder-mixed electrical discharge machining (EDM). Mater Manuf Process. 2014;29(1):46–52.
  • Simao J, Lee HG, Aspinwall DK, et al. Workpiece surface modification using electrical discharge machining. Int J Mach Tools Manuf. 2003;43(2):121–128.
  • Strasky J, Janecek M, Harcuba P. Electric discharge machining of Ti-6Al-4V alloy for biomedical use. Proceedings of the 20th Annual Conference of Doctoral Students – WDS; 2011.
  • Zinelis S, Al Jabbari YS, Thomas A, et al. Multitechnique characterization of CPTi surfaces after electro discharge machining (EDM). Clin Oral Investig. 2014;18(1):67–75.
  • Rouniyar AK, Shandilya P. Experimental investigation on recast layer and surface roughness on aluminum 6061 alloy during magnetic field assisted powder mixed electrical discharge machining. J Mater Eng Perform. 2020;29(12):7981–7992.
  • Al-Amin M, Abdul Rani AM, Abdu Aliyu AA, et al. Bio-ceramic coatings adhesion and roughness of biomaterials through PM-EDM: a comprehensive review. Mater Manuf Process. 2020;35(11):1157–1180.
  • Bisaria H, Shandilya P. Machining of metal matrix composites by EDM and its variants: a review. In: Katalinic B, editor. Chapter 23 in DAAAM international scientific book. Vienna: DAAAM International; 2015. p. 267–282.
  • Zinelis S. Surface and elemental alterations of dental alloys induced by electro discharge machining (EDM). Dent Mater J. 2007;23(5):601–607.
  • Bisaria H, Shandilya P. Surface integrity aspects for NiTi shape memory alloys during wire electric discharge machining: a review. J Mater Res. 2020;35(6):537–558.
  • Alhodaib A, Shandilya P, Rouniyar AK, et al. Experimental investigation on silicon powder mixed-EDM of nimonic-90 superalloy. Metals (Basel). 2021;11(11):1673.
  • Rouniyar AK, Shandilya P. Fabrication and experimental investigation of magnetic field assisted powder mixed electrical discharge machining on machining of aluminum 6061 alloy. Proc Inst Mech Eng B J Eng Manuf P. 2019;233(12):2283–2291.
  • Wennerberg A, Hallgren C, Johansson C, et al. Surface characterization and biological evaluation of spark-eroded surfaces. J Mater Sci Mater Med. 1997;8(12):757–763.
  • Bisaria H, Shandilya P. Wire electric discharge machining induced surface integrity for Ni55. 95Ti44.05 shape memory alloy. P I Mech Eng E J Pro Mech Eng. 2021;235(2):178–185.
  • Prakash C, Kansal HK, Pabla BS, et al. Powder mixed electric discharge machining: an innovative surface modification technique to enhance fatigue performance and bioactivity of β-Ti implant for orthopedics application. J Comput Inf Sci Eng. 2016;16(4):041006 (9 pages).
  • Prakash C, Kansal HK, Pabla BS, et al. Processing and characterization of novel biomimetic nanoporous bioceramic surface on β-Ti implant by powder mixed electric discharge machining. J Mater Eng Perform. 2015;24(9):3622–3633.
  • Bui VD, Mwangi JW, Schubert A. Powder mixed electrical discharge machining for antibacterial coating on titanium implant surfaces. J Manuf Process. 2019;44:261–270.
  • Bui VD, Mwangi JW, Meinshausen AK, et al. Antibacterial coating of Ti-6Al-4V surfaces using silver nano-powder mixed electrical discharge machining. Surf Coat Technol. 2020;383:125254.
  • Zhu Z, Guo D, Xu J, et al. Processing characteristics of micro electrical discharge machining for surface modification of TiNi shape memory alloys using a TiC powder dielectric. Micromachines (Basel). 2020;11(11):1018.
  • Peng PW, Ou KL, Lin HC, et al. Effect of electrical-discharging on formation of nanoporous biocompatible layer on titanium. J Alloys Compd. 2010;492(1-2):625–630.
  • Lee WF, Yang TS, Wu YC, et al. Nanoporous biocompatible layer on Ti–6Al–4V alloys enhanced osteoblast-like cell response. J Exp Clin Med. 2013;5(3):92–96.
  • Mahajan A, Sidhu SS. Enhancing biocompatibility of Co-Cr alloy implants via electrical discharge process. Mater Technol. 2018;33(8):524–531.
  • Mahajan A, Devgan S, Sidhu SS. Surface alteration of biomedical alloys by electrical discharge treatment for enhancing the electrochemical corrosion, tribological and biological performances. Surf Coat Technol. 2021;405:126583.
  • Prakash C, Kansal HK, Pabla BS, et al. Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Mater Manuf Process. 2017;32(3):274–285.
  • Prakash C, Kansal HK, Pabla BS, et al. Multi-objective optimization of powder mixed electric discharge machining parameters for fabrication of biocompatible layer on β-Ti alloy using NSGA-II coupled with Taguchi based response surface methodology. J Mech Sci Technol. 2016;30(9):4195–4204.
  • Singh G, Singh M, Sidhu SS, et al. Improving surface characteristics and corrosion resistance of medical grade 316L by titanium powder mixed electro-discharge treatment. Surf Topogr. 2022;10(2):025002.
  • Yang TS, Huang MS, Wang MS, et al. Effect of electrical discharging on formation of nanoporous biocompatible layer on Ti-6Al-4V alloys. Implant Dent. 2013;22(4):374–379.
  • Mansor AF, Azmi AI, Zain MZ, et al. Parametric evaluation of electrical discharge coatings on nickel-titanium shape memory alloy in deionized water. Heliyon. 2020;6(8):e04812.
  • Mughal MP, Farooq MU, Mumtaz J, et al. Surface modification for osseointegration of Ti6Al4V ELI using powder mixed sinking EDM. J Mech Behav Biomed Mater. 2021;113:104145.
  • Al-Amin M, Abdul-Rani AM, Rana M, et al. Evaluation of modified 316L surface properties through HAp suspended EDM process for biomedical application. Surf Interfaces. 2022;28:101600.
  • Singh G, Sidhu SS, Bains PS, et al. On surface modification of Ti alloy by electro discharge coating using hydroxyapatite powder mixed dielectric with graphite tool. J Bio- Tribo-Corrosion. 2020;6(3):1–11.
  • Tahsin OP, Yasar H, Murphy M, et al. Ti6Al4V surface modification by hydroxyapatite powder mixed electrical discharge machining for medical applications. Int J Adv Eng Pure Sci. 2018;31:1–0.
  • Aliyu AAA, Abdul-Rani AM, Ginta TL, et al. Hydroxyapatite mixed-electro discharge formation of bioceramic Lakargiite (CaZrO3) on Zr–Cu–Ni–Ti–Be for orthopedic application. Mater Manuf Process. 2018;33(16):1734–1744.
  • Al-Amin M, Abdul-Rani AM, Ahmed R, et al. Multiple-objective optimization of hydroxyapatite-added EDM technique for processing of 316L-steel. Mater Manuf Process. 2021;36(10):1134–1145.
  • Ekmekci N, Ekmekci B. Electrical discharge machining of Ti6Al4V in hydroxyapatite powder mixed dielectric liquid. Mater Manuf Process. 2016;31(13):1663–1670.
  • Prakash C, Singh S, Singh M, et al. Multi-objective particle swarm optimization of EDM parameters to deposit HA-coating on biodegradable Mg-alloy. Vacuum. 2018;158:180–190.
  • Lamichhane Y, Singh G, Bhui AS, et al. Surface modification of 316L SS with HAp nano-particles using PMEDM for enhanced biocompatibility. Mater Today Proc. 2019;15:336–343.
  • Ou SF, Wang CY. Fabrication of a hydroxyapatite-containing coating on Ti–Ta alloy by electrical discharge coating and hydrothermal treatment. Surf Coat Technol. 2016;302:238–243.
  • Prakash C, Uddin MS. Surface modification of β-phase Ti implant by hydroaxyapatite mixed electric discharge machining to enhance the corrosion resistance and in-vitro bioactivity. Surf Coat Technol. 2017;326:134–145.
  • Abdul-Rani AM, Aliyu AA, Hastuty S, et al. Enhancing surface quality of Zr-Cu-Ni-Ti-Be through hydroxyapatite mixed EDM for potential orthopedic application. AIP Conf Proc. 2018;2035:080010.
  • Aliyu AA, Abdul-Rani AM, Ginta TL, et al. Hydroxyapatite electro discharge coating of Zr-based bulk metallic glass for potential orthopedic application. Key Eng Mater. 2019;796:123–128.
  • Bains PS, Bahraminasab M, Sidhu SS, et al. On the machinability and properties of Ti–6Al–4V biomaterial with n-HAp powder-mixed ED machining. Proc Inst Mech Eng H. 2020;234(2):232–242.
  • Abdul-Rani AM, Rao TV, Axinte E, et al. Characterization, adhesion strength and in-vitro cytotoxicity investigation of hydroxyapatite coating synthesized on Zr-based BMG by electro discharge process. Surf Coat Technol. 2019;370:213–226.
  • Devgan S, Sidhu SS. Surface modification of β-type titanium with multi-walled CNTs/μ-HAp powder mixed electro discharge treatment process. Mater Chem Phys. 2020;239:122005.
  • Axinte E, Fua-Nizan R. Investigation of nanoporosities fabricated on metallic glass surface by hydroxyapatite mixed EDM for orthopedic application. Malays J Fundl Appl Sci. 2017;13:523–528.
  • Aliyu AA, Abdul-Rani AM, Ginta TL, et al. Synthesis and characterization of bioceramic oxide coating on Zr-Ti-Cu-Ni-Be BMG by electro discharge process. In: Gapiński B, Szostak M, Ivanov V, editors. Advances in manufacturing II. MANUFACTURING 2019. Lecture notes in mechanical engineering. Cham: Springer; 2019. p. 518–531.
  • Ekmekci N, Ekmekci B. Hydroxyapatite deposition onto Ti-6Al-4V surface in powder mixed electrical discharge machining. Adv Mat Res. 2014;856:205–209.
  • Singh G, Lamichhane Y, Bhui AS, et al. Surface morphology and microhardness behavior of 316L in HAp-PMEDM. Facta Univ Ser.: Mech Eng. 2019;17(3):445–454.
  • Yaşar H, Ekmekci B. The effect of micro and nano hydroxyapatite powder on biocompatibility and surface integrity of Ti6Al4V (ELI) in powder mixed electrical discharge machining. Surf Topogr-Metrol. 2021;9(1):015015.
  • Al-Amin M, Abdul-Rani AM, Danish M, et al. Analysis of hybrid HA/CNT suspended-EDM process and multiple-objectives optimization to improve machining responses of 316L steel. J Mater Res Technol. 2021;15:2557–2574.
  • Danish M, Al-Amin M, Rubaiee S, et al. Enhanced machining features and multi-objective optimization of CNT mixed-EDM process for processing 316L steel. Int J Adv Manuf Technol. 2022;120(9):6125–6141.
  • Al-Amin M, Abdul-Rani AM, Rao TV, et al. Investigation of machining and modified surface features of 316L steel through novel hybrid of HA/CNT added-EDM process. Mater Chem Phys. 2022;276:125320.
  • Aliyu AA, Abdul-Rani AM, Rubaiee S, et al. Electro-Discharge machining of Zr67Cu11Ni10Ti9Be3: an investigation on hydroxyapatite deposition and surface roughness. Processes. 2020;8(6):635.
  • Singh G, Bhui AS, Sidhu SS, et al. Surface characteristics and in vitro corrosion behavior of HAp-coated 316L stainless steel for biomedical applications. In: Bains P, Sidhu S, Bahraminasab M, et al., editor. Biomaterials in orthopaedics and bone regeneration. Materials horizons: from nature to nanomaterials. Singapore: Springer; 2019. p. 117–129.
  • Devgan S, Sidhu SS. Potential of electrical discharge treatment incorporating MWCNTs to enhance the corrosion performance of the β-titanium alloy. Appl Phys A. 2020;126(3):1–6.
  • Wang YH, Liao CC, Chen YC, et al. The feasibility of eco-friendly electrical discharge machining for surface modification of Ti: a comparison study in surface properties, bioactivity, and cytocompatibility. Mater Sci Eng C. 2020;108:110192.
  • Mudali UK, Sridhar TM, Raj B. Corrosion of bio implants. Sadhana. 2003;28:601–637.
  • Mudali UK, Sridhar TM, Eliaz N, et al. Failures of stainless steel orthopedic devices – causes and remedies. Corros Rev. 2003;21(2–3):231–268.
  • Sridhar TM, Vinodhini SP, Mudali UK, et al. Load-bearing metallic implants: electrochemical characterisation of corrosion phenomena. Mater Technol. 2016;31:705–718.
  • Sridhar TM. Nanobioceramic coatings for biomedical applications. Mater Technol. 2010;25:84–195.
  • Sridhar TM, Rajeswari S. Biomaterials corrosion. Corros Rev. 2009;27:287–332.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.