392
Views
1
CrossRef citations to date
0
Altmetric
Review

Laser shock peening: a promising tool for enhancing the aeroengine materials’ surface properties

ORCID Icon, , &
Pages 245-274 | Received 10 Jan 2023, Accepted 19 Apr 2023, Published online: 04 May 2023

References

  • Furrer D, Fecht H. Ni-based superalloys for turbine discs. Jom. 1999;51(1):14–17. doi:10.1007/s11837-999-0005-y.
  • Boyer RR. An overview on the use of titanium in the aerospace industry. Mater Sci Eng A. 1996;213(1–2):103–114. doi:10.1016/0921-5093(96)10233-1.
  • Boyer RR, Cotton JD, Mohaghegh M, et al. Materials considerations for aerospace applications. MRS Bull. 2015;40(12):1055–1066. doi:10.1557/mrs.2015.278.
  • Gaspar B. Microstructural characterization of Ti–6Al–4V and its relationship to sample geometry. Mater Eng Dep Cal Poly – San Luis Obispo. 2012:1–22.
  • Rao N. Materials for gas turbines – An overview. In: Benini E, editor. Advances in gas turbine technology. IntechOpen; 2011. p. 293–314. doi:10.5772/20730.
  • Mouritz AP. Introduction to aerospace materials. In: Introduction to aerospace materials. Woodhead Publishing; 2012. p. 1–621. doi:10.2514/4.869198.
  • Williams JC, Starke EA. Progress in structural materials for aerospace systems. Acta Mater. 2003;51(19):5775–5799. doi:10.1016/j.actamat.2003.08.023.
  • Ta NY, Wu G, Yang J-M, et al. Laser shock peening on fatigue crack growth behaviour of aluminium alloy. Fatigue Fract Eng Mater Struct. 2004;27:649–656.
  • Starke EA, Staley JT. Application of modern aluminium alloys to aircraft. Fundam Alum Metall Prod Process Appl. 2010;32(95):747–783. doi:10.1533/9780857090256.3.747.
  • Zhang XQ, Li H, Yu XL, et al. Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate. Mater Des. 2015;65:425–431. doi:10.1016/j.matdes.2014.09.001.
  • Ma YE, Xia ZC, Jiang RR, et al. Effect of welding parameters on mechanical and fatigue properties of friction stir welded 2198 t8 aluminum–lithium alloy joints. Eng Fract Mech. 2013;114:1–11. doi:10.1016/j.engfracmech.2013.10.010.
  • Kumari S, Satyanarayana DVV, Srinivas M. Failure analysis of gas turbine rotor blades. Eng Fail Anal. 2014;45:234–244. doi:10.1016/j.engfailanal.2014.06.003.
  • Gloria A, Montanari R, Richetta M, et al. Alloys for aeronautic applications: state of the art and perspectives. Metals (Basel). 2019;9(6):1–26. doi:10.3390/met9060662.
  • Biswas S, Ramachandra S, Hans P, et al. Materials for gas turbine engines: present status, future trends and indigenous efforts. J Indian Inst Sci. 2022;102(1):297–309. doi:10.1007/s41745-022-00295-z.
  • Whittaker M. Titanium in the gas turbine engine. Adv Gas Turbine Technol. 2011;4:315–336. doi:10.5772/21524.
  • Gogia AK. High-temperature titanium alloys. Def Sci J. 2005;55(2):149–173. doi:10.14429/dsj.55.1979.
  • Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. J Propuls Power. 2006;22(2):361–374. doi:10.2514/1.18239.
  • Dieter GE. Mechanical metallurgy (Vol. 3). New York: McGRAW-Hill Book Company; 1961. p. 447–459.
  • Montross CS, Wei T, Ye L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int J Fatigue. 2002;24(10):1021–1036. doi:10.1016/S0142-1123(02)00022-1.
  • Gujba AK, Medraj M. Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening. Materials MDPI AG. 2014;7:7925–7974. doi:10.3390/ma7127925.
  • Karthik D, Swaroop S. Laser peening without coating induced phase transformation and thermal relaxation of residual stresses in AISI 321 steel. Surf Coatings Technol. 2016;291:161–171. doi:10.1016/j.surfcoat.2016.02.038.
  • Praveenkumar K, Swaroop S, Manivasagam G. Effect of multiple laser peening on microstructural, fatigue and fretting-wear behaviour of austenitic stainless steel. Surf Coatings Technol. 2022;443:128611. doi:10.1016/j.surfcoat.2022.128611.
  • Dhakal B, Swaroop S. Review: laser shock peening as post welding treatment technique. J Manuf Process. 2018;32(April):721–733. doi:10.1016/j.jmapro.2018.04.006.
  • Karthik D, Swaroop S. Laser peening without coating—an advanced surface treatment: a review. Mater Manuf Process. 2017;32(14):1565–1572. doi:10.1080/10426914.2016.1221095.
  • Kalainathan S, Prabhakaran S. Recent development and future perspectives of low energy laser shock peening. Opt Laser Technol. 2016;81:137–144. doi:10.1016/j.optlastec.2016.02.007.
  • Rai PK, Shekhar S, Mondal K. Effects of grain size gradients on the fretting wear of a specially-processed low carbon steel against AISI E52100 bearing steel. Wear. 2018;412–413(January):1–13. doi:10.1016/j.wear.2018.07.014.
  • Prabhakaran S, Kulkarni A, Vasanth G, et al. Laser shock peening without coating induced residual stress distribution, wettability characteristics and enhanced pitting corrosion resistance of austenitic stainless steel. Appl Surf Sci. 2018;428:17–30. doi:10.1016/j.apsusc.2017.09.138.
  • Praveenkumar K, Mylavarapu P, Sarkar A, et al. Residual stress distribution and elevated temperature fatigue behaviour of laser peened Ti–6Al–4V with a curved surface. Int J Fatigue. 2022;156(September):106641. doi:10.1016/j.ijfatigue.2021.106641.
  • Maawad E, Sano Y, Wagner L, et al. Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys. Mater Sci Eng A. 2012;536:82–91. doi:10.1016/j.msea.2011.12.072.
  • Nalla RK, Altenberger I, Noster U, et al. On the influence of mechanical surface treatments-deep rolling and laser shock peening-on the fatigue behavior of Ti–6Al–4V at ambient and elevated temperatures. Mater Sci Eng A. 2003;355(1–2):216–230. doi:10.1016/S0921-5093(03)00069-8.
  • Luo X, Dang N, Wang X. The effect of laser shock peening, shot peening and their combination on the microstructure and fatigue properties of Ti–6Al–4V titanium alloy. Int J Fatigue. 2021;153(August):106465. doi:10.1016/j.ijfatigue.2021.106465.
  • Rajan SS, Swaroop S, Manivasagam G, et al. Fatigue life enhancement of titanium alloy by the development of nano/micron surface layer using laser peening. J Nanosci Nanotechnol. 2019;19(11):7064–7073. doi:10.1166/jnn.2019.16639.
  • Rajan SS, Manivasagam G, Ranganathan M, et al. Influence of laser peening without coating on microstructure and fatigue limit of Ti–15V–3Al–3Cr–3Sn. Opt Laser Technol. 2019;111(May 2018):481–488. doi:10.1016/j.optlastec.2018.10.027.
  • Hatamleh O, Forth S, Reynolds AP. Fatigue crack growth of peened friction stir-welded 7075 aluminum alloy under different load ratios. J Mater Eng Perform. 2010;19(1):99–106. doi:10.1007/s11665-009-9439-1.
  • Barella S, Boniardi M, Cincera S, et al. Failure analysis of a third stage gas turbine blade. Eng Fail Anal. 2011;18(1):386–393. doi:10.1016/j.engfailanal.2010.09.017.
  • Clauer AH. Laser shock peening, the path to production. Metals (Basel). 2019;9(6):626. doi:10.3390/met9060626.
  • Nikitin I, Scholtes B, Maier HJ, et al. High temperature fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic steel AISI 304. Scr Mater. 2004;50(10):1345–1350. doi:10.1016/j.scriptamat.2004.02.012.
  • Altenberger I, Nalla RK, Sano Y, et al. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti–6Al–4V at elevated temperatures up to 550°C. Int J Fatigue. 2012;44:292–302. doi:10.1016/j.ijfatigue.2012.03.008.
  • Mordyuk BN, Milman YV, Iefimov MO, et al. Characterization of ultrasonically peened and laser-shock peened surface layers of aisi 321 stainless steel. Surf Coatings Technol 2008;202(19):4875–4883. doi:10.1016/j.surfcoat.2008.04.080.
  • Soyama H, Takeo F. Comparison between cavitation peening and shot peening for extending the fatigue life of a duralumin plate with a hole. J Mater Process Technol. 2016;227:80–87. doi:10.1016/j.jmatprotec.2015.08.012.
  • Avilés A, Avilés R, Albizuri J, et al. Effect of shot-peening and low-plasticity burnishing on the high-cycle fatigue strength of DIN 34CrNiMo6 alloy steel. Int J Fatigue. 2019;119(April 2018):338–354. doi:10.1016/j.ijfatigue.2018.10.014.
  • Amanov A, Karimbaev R, Maleki E, et al. Effect of combined shot peening and ultrasonic nanocrystal surface modification processes on the fatigue performance of AISI 304. Surf Coatings Technol. 2019;358(November 2018):695–705. doi:10.1016/j.surfcoat.2018.11.100.
  • Tsuji N, Tanaka S, Takasugi T. Effects of combined plasma-carburizing and shot-peening on fatigue and wear properties of Ti–6Al–4V alloy. Surf Coatings Technol. 2009;203(10–11):1400–1405. doi:10.1016/j.surfcoat.2008.11.013.
  • Rajan SS, Manivasagam G, Swaroop S, et al. A comparison of surface and sub-surface features induced by shot peening vs. laser peening on a duplex aged beta Ti alloy. Singapore: Springer; 2020. p. 314–320. (Lecture notes in mechanical engineering). doi:10.1007/978-981-15-0054-1_33.
  • Yang Q, Zhou W, Zhong Y, et al. Effect of shot-peening on the fretting wear and crack initiation behavior of Ti–6Al–4V dovetail joint specimens. Int J Fatigue. 2018;107(September 2017):83–95. doi:10.1016/j.ijfatigue.2017.10.020.
  • Breuner C, Guth S, Gall E, et al. Influence of shot peening on the isothermal fatigue behavior of the gamma titanium aluminide Ti–48Al–2Cr–2Nb at 750°C. Metals (Basel). 2021;11(7):1–12. doi:10.3390/met11071083.
  • Thomas M, Lindley T, Rugg D, et al. The effect of shot peening on the microstructure and properties of a near-alpha titanium alloy following high temperature exposure. Acta Mater. 2012;60(13–14):5040–5048. doi:10.1016/j.actamat.2012.06.017.
  • Prevey PS, Hornbach DJ, Mason PW. Thermal residual stress relaxation and distortion in surface enhanced gas turbine engine components. 17th ASM Heat Treat Soc Conf. 1998: 3–12. doi:10.1361/cp199.
  • Chin KS, Idapalapati S, Ardi DT. Thermal stress relaxation in shot peened and laser peened nickel-based superalloy. J Mater Sci Technol. 2020;59:100–106. doi:10.1016/j.jmst.2020.03.059.
  • Clauer AH, Lahrman DF. Laser shock processing as a surface enhancement process. Key Eng Mater. 2001;197:121–142. doi:10.4028/www.scientific.net/kem.197.121.
  • Zhuang W, Wicks B. Mechanical surface treatment technologies for gas turbine engine components. J Eng Gas Turbines Power. 2003;125(4):1021–1025. doi:10.1115/1.1610011.
  • Dhakal B, Swaroop S. Effect of laser shock peening on mechanical and microstructural aspects of 6061-T6 aluminum alloy. J Mater Process Technol. 2020;282:116640. doi:10.1016/j.jmatprotec.2020.116640.
  • Praveenkumar K, Mylavarapu P, Swaroop S. Surface oxidation and subsurface deformation in a laser-peened Ti–6Al–4V. J Mater Eng Perform. 2022. doi:10.1007/s11665-022-07639-x.
  • Praveenkumar K, Swaroop S, Manivasagam G. Residual stress distribution, phase transformation, and wettability characteristics of laser peened austenitic stainless steel. J Mater Eng Perform. 2022;31:6846–6857. doi:10.1007/s11665-022-06748-x.
  • Askar’yan GA, Moroz EM. Pressure on evaporation of matter in a radiation beam. Sov J Exp Theor Phys. 1963;43:2319–2320.
  • Fairand BP, Clauer AH, Jung RG, et al. Quantitative assessment of laser-induced stress waves generated at confined surfaces. Appl Phys Lett. 1974;25(8):431–433. doi:10.1063/1.1655536.
  • Fairand BP, Wilcox BA, Gallagher WJ, et al. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum. J Appl Phys. 1972;43(9):3893–3895. doi:10.1063/1.1661837.
  • Clauer AH, Holbrook JH, Fairand BP. Effects of laser induced shock waves on metals. Proc Soc Photo-Optical Instrum Eng. 1981: 675–702. doi:10.1007/978-1-4613-3219-0_38.
  • Fairand BP, Clauer AH. Laser generation of high-amplitude stress waves in materials. J Appl Phys. 1979;50(3):1497–1502. doi:10.1063/1.326137.
  • Joe P. United states patent [19]; 1999, No. 54.
  • Ding K, Ye L. Laser shock peening performance and process simulation. North America; 2006
  • Lin B, Zabeen S, Tong J, et al. Residual stresses due to foreign object damage in laser-shock peened aerofoils: simulation and measurement. Mech Mater. 2015;82:78–90. doi:10.1016/j.mechmat.2014.12.001.
  • Zhang C, Dong Y, Ye C. Recent developments and novel applications of laser shock peening: a review. Adv Eng Mater. 2021;23(7):1–24. doi:10.1002/adem.202001216.
  • Peyre P, Berthe L, Scherpereel X, et al. Laser-shock processing of aluminium-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour. J Mater Sci. 1998;33(6):1421–1429. doi:10.1023/A:1004331205389.
  • Ruschau JJ, John R, Thompson SR, et al. Fatigue crack nucleation and growth rate behavior of laser shock peened titanium. Int J Fatigue. 1999;21:199–209. doi:10.1016/s0142-1123(99)00072-9.
  • Gomez-Rosas G, Rubio-Gonzalez C, Ocaña JL, et al. Laser shock processing of 6061-T6 Al alloy with 1064 Nm and 532 Nm wavelengths. Appl Surf Sci. 2010;256(20):5828–5831. doi:10.1016/j.apsusc.2010.03.043.
  • Rubio-González C, Felix-Martinez C, Gomez-Rosas G, et al. Effect of laser shock processing on fatigue crack growth of duplex stainless steel. Mater Sci Eng A. 2011;528(3):914–919. doi:10.1016/j.msea.2010.10.020.
  • Vishnu J, Ansheed AR, Hameed P, et al. Insights into the surface and biocompatibility aspects of laser shock peened Ti–22Nb alloy for orthopedic implant applications. Appl Surf Sci. 2022;586(February):152816. doi:10.1016/j.apsusc.2022.152816.
  • Cao Z, Xu H, Zou S, et al. Investigation of surface integrity on TC17 titanium alloy treated by square-spot laser shock peening. Chinese J Aeronaut. 2012;25(4):650–656. doi:10.1016/S1000-9361(11)60429-9.
  • Gagliardi MA, Sencer BH, Hunt AW, et al. Relative defect density measurements of laser shock peened 316L stainless steel using positron annihilation spectroscopy. J Nondestruct Eval. 2011;30(4):221–224. doi:10.1007/s10921-011-0110-z.
  • Luo KY, Lin T, Dai FZ, et al. Effects of overlapping rate on the uniformities of surface profile of LY2 Al alloy during massive laser shock peening impacts. Surf Coatings Technol. 2015;266:49–56. doi:10.1016/j.surfcoat.2015.02.017.
  • Petan L, Ocaña JL, Grum J. Influence of laser shock peening pulse density and spot size on the surface integrity of X2NiCoMo18-9-5 maraging steel. Surf Coatings Technol. 2016;307:262–270. doi:10.1016/j.surfcoat.2016.08.088.
  • Kalentics N, Boillat E, Peyre P, et al. Tailoring residual stress profile of selective laser melted parts by laser shock peening. Addit Manuf. 2017;16:90–97. doi:10.1016/j.addma.2017.05.008.
  • Zhang H, Ren X, Tong Y, et al. Surface integrity of 2A70 aluminum alloy processed by laser-induced peening and cavitation bubbles. Results Phys. 2019;12(November 2018):1204–1211. doi:10.1016/j.rinp.2018.11.093.
  • Hu Y, Yao Z. Overlapping rate effect on laser shock processing of 1045 steel by small spots with Nd:YAG pulsed laser. Surf Coatings Technol. 2008;202(8):1517–1525. doi:10.1016/j.surfcoat.2007.07.008.
  • Gopi D, Shinyjoy E, Karthika A, et al. Single walled carbon nanotubes reinforced mineralized hydroxyapatite composite coatings on titanium for improved biocompatible implant applications. RSC Adv. 2015;5(46):36766–36778. doi:10.1039/c5ra04382d.
  • Xu G, Luo KY, Dai FZ, et al. Effects of scanning path and overlapping rate on residual stress of 316L stainless steel blade subjected to massive laser shock peening treatment with square spots. Appl Surf Sci. 2019;481(March):1053–1063. doi:10.1016/j.apsusc.2019.03.093.
  • Karbalaian HR, Yousefi-Koma A, Karimpour M, et al. Investigation on the effect of overlapping laser pulses in laser shock peening with finite element method. Procedia Mater Sci. 2015;11:454–458. doi:10.1016/j.mspro.2015.11.045.
  • Umapathi A, Swaroop S. Residual stress distribution in a laser peened Ti–2.5Cu alloy. Surf Coatings Technol. 2016;307:38–46. doi:10.1016/j.surfcoat.2016.08.053.
  • Peyre P, Fabbro R, Merrien P, et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour. Mater Sci Eng A. 1996;210(1–2):102–113. doi:10.1016/0921-5093(95)10084-9.
  • Berthe L, Fabbro R, Peyre P, et al. Shock waves from a water-confined laser-generated plasma. J Appl Phys. 1997;82(6):2826–2832. doi:10.1063/1.366113.
  • Liu Q, Yang CH, Ding K., et al. The effect of laser power density on the fatigue life of laser-shock-peened 7050 aluminium alloy. Fatigue Fract Eng Mater Struct. 2007;30(11):1110–1124. doi:10.1111/ffe.2007.30.issue-11.
  • Zabeen S, Langer K, Fitzpatrick ME. Effect of alloy temper on surface modification of aluminium 2624 by laser shock peening. Surf Coatings Technol. 2018;347(April):123–135. doi:10.1016/j.surfcoat.2018.04.069.
  • Karthik D, Arul Xavier Stango S, Vijayalakshmi U, et al. Electrochemical behavior of laser shock peened inconel 625 superalloy. Surf Coatings Technol. 2017;311:46–54. doi:10.1016/j.surfcoat.2016.12.105.
  • Umapathi A, Swaroop S. Wavelength dependent deformation in a laser peened Ti–2.5Cu alloy. Mater Sci Eng A. 2017;684:344–352. doi:10.1016/j.msea.2016.12.073.
  • Umapathi A, Swaroop S. Deformation of single and multiple laser peened TC6 titanium alloy. Opt Laser Technol. 2018;100:309–316. doi:10.1016/j.optlastec.2017.10.022.
  • Joshi KS, Rajyalakshmi G, Ranjith G, et al. Optimization of laser shock peening for titanium. Mater Today Proc. 2018;5(5):12174–12186. doi:10.1016/j.matpr.2018.02.195.
  • Yella P, Venkateswarlu P, Buddu RK, et al. Laser shock peening studies on SS316LN plate with various sacrificial layers. Appl Surf Sci. 2018;435:271–280. doi:10.1016/j.apsusc.2017.11.088.
  • Liao Y, Yang Y, Cheng GJ. Enhanced laser shock by an active liquid confinement-hydrogen peroxide. J Manuf Sci Eng Trans ASME. 2012;134(3). doi:10.1115/1.4006552.
  • Suh JH, Shin JK, Kang SJL, et al. Investigation of IGSCC behavior of sensitized and laser-surface-melted alloy 600. Mat Sci Eng A. 1998;254:67–75. doi:10.1016/s0921-5093(98)00704-7.
  • Karthik D, Yazar KU, Bisht A, et al. Gradient plastic strain accommodation and nanotwinning in multi-pass laser shock peened 321 steel. Appl Surf Sci. 2019;487(May):426–432. doi:10.1016/j.apsusc.2019.05.130.
  • Wang C, Wang L, Wang CL, et al. Dislocation density-based study of grain refinement induced by laser shock peening. Opt Laser Technol. 2020;121(September 2019):105827. doi:10.1016/j.optlastec.2019.105827.
  • Ding H, Shin YC. Dislocation density-based modeling of subsurface grain refinement with laser-induced shock compression. Comput Mater Sci. 2012;53(1):79–88. doi:10.1016/j.commatsci.2011.08.038.
  • Hatamleh O, DeWald A. An investigation of the peening effects on the residual stresses in friction stir welded 2195 and 7075 aluminum alloy joints. J Mater Process Technol. 2009;209(10):4822–4829. doi:10.1016/j.jmatprotec.2008.12.010.
  • Masse JE, Barreau G. Surface modification by laser induced shock waves. Surf Eng. 1995;11(2):131–132. doi:10.1179/sur.1995.11.2.131.
  • Chen H, Feng A, Li J, et al. Effects of multiple laser peening impacts on mechanical properties and microstructure evolution of 40CrNiMo steel. J Mater Eng Perform. 2019;28(5):2522–2529. doi:10.1007/s11665-019-04034-x.
  • Zhu J, Jiao X, Zhou C, et al. Applications of underwater laser peening in nuclear power plant maintenance. Energy Procedia. 2012;16:153–158. doi:10.1016/j.egypro.2012.01.026.
  • Yang Y, Lian X, Zhou K, et al. Effects of laser shock peening on microstructures and properties of 2195 Al–Li alloy. J Alloys Compd. 2019;781:330–336. doi:10.1016/j.jallcom.2018.12.118.
  • Zhang XC, Zhang YK, Lu JZ, et al. Improvement of fatigue life of Ti–6Al–4V alloy by laser shock peening. Mater Sci Eng A. 2010;527(15):3411–3415. doi:10.1016/j.msea.2010.01.076.
  • Shen X, Shukla P, Nath S, et al. Improvement in mechanical properties of titanium alloy (Ti–6Al–7Nb) subject to multiple laser shock peening. Surf Coatings Technol. 2017;327:101–109. doi:10.1016/j.surfcoat.2017.08.009.
  • Li J, Zhou J, Feng A, et al. Influence of multiple laser peening on vibration fatigue properties of TC6 titanium alloy. Opt Laser Technol. 2019;118:183–191. doi:10.1016/j.optlastec.2019.05.007.
  • Santhosh R, Geetha M, Saxena VK, et al. Studies on single and duplex aging of metastable beta titanium alloy Ti–15V–3Cr–3Al–3Sn. J Alloys Compd. 2014;605(April):222–229. doi:10.1016/j.jallcom.2014.03.183.
  • Reifsnider K, Rabbi F, Vadlamudi V, et al. Critical path-driven property and performance transitions in heterogeneous microstructures. J Mater Sci. 2017;52(9):4796–4809. doi:10.1007/s10853-017-0791-5.
  • Lu JZ, Wu LJ, Sun GF, et al. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts. Acta Mater. 2017;127:252–266. doi:10.1016/j.actamat.2017.01.050.
  • Gayda J, Miner RV. Fatigue crack initiation and propagation in several nickel-base superalloys at 650°C. Int J Fatigue. 1983;5(3):135–143. doi:10.1016/0142-1123(83)90026-9.
  • Yin MG, Cai ZB, Li ZY, et al. Improving impact wear resistance of Ti–6Al–4V alloy treated by laser shock peening. Trans Nonferrous Met Soc China (English Ed.). 2019;29(7):1439–1448. doi:10.1016/S1003-6326(19)65051-X.
  • Jia W, Zan Y, Mao C, et al. Microstructure evolution and mechanical properties of a lamellar near-α titanium alloy treated by laser shock peening. Vacuum. 2021;184(November 2020):109906. doi:10.1016/j.vacuum.2020.109906.
  • Ren XD, Yang XQ, Zhou WF, et al. Thermal stability of surface nano-crystallization layer in AZ91D magnesium alloy induced by laser shock peening. Surf Coatings Technol. 2018;334(June 2017):182–188. doi:10.1016/j.surfcoat.2017.09.037.
  • Yong W, Xibin W, Zhibing L, et al. Effects of laser shock peening in different processes on fatigue life of 32CrNi steel. Mater Sci Eng A. 2020;796(5):139933. doi:10.1016/j.msea.2020.139933.
  • Trdan U, Skarba M, Grum J. Laser shock peening effect on the dislocation transitions and grain refinement of Al-Mg-Si alloy. Mater Charact. 2014;97:57–68. doi:10.1016/j.matchar.2014.08.020.
  • Ren XD, Zhou WF, Liu FF, et al. Microstructure evolution and grain refinement of Ti–6Al–4V alloy by laser shock processing. Appl Surf Sci. 2016;363:44–49. doi:10.1016/j.apsusc.2015.11.192.
  • Lu JZ, Luo KY, Zhang YK, et al. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel. Acta Mater. 2010;58(16):5354–5362. doi:10.1016/j.actamat.2010.06.010.
  • Mostafa AM, Hameed MF, Obayya SS. Effect of laser shock peening on the hardness of AL-7075 alloy. J King Saud Univ – Sci. 2019;31(4):472–478. doi:10.1016/j.jksus.2017.07.012.
  • Nie X, He W, Zhou L, et al. Experiment investigation of laser shock peening on TC6 titanium alloy to improve high cycle fatigue performance. Mater Sci Eng A. 2014;594:161–167. doi:10.1016/j.msea.2013.11.073.
  • Kattoura M, Mannava SR, Qian D, et al. Effect of laser shock peening on elevated temperature residual stress, microstructure and fatigue behavior of ATI 718Plus alloy. Int J Fatigue. 2017;104:366–378. doi:10.1016/j.ijfatigue.2017.08.006.
  • Wang J, Lu Y, Zhou D, et al. Mechanical properties and microstructural response of 2A14 aluminum alloy subjected to multiple laser shock peening impacts. Vacuum. 2019;165(January):193–198. doi:10.1016/j.vacuum.2019.03.058.
  • Sathyajith S, Kalainathan S. Effect of laser shot peening on precipitation hardened aluminum alloy 6061-T6 using low energy laser. Opt Lasers Eng. 2012;50(3):345–348. doi:10.1016/j.optlaseng.2011.11.002.
  • Kashaev N, Ventzke V, Horstmann M, et al. Effects of laser shock peening on the microstructure and fatigue crack propagation behaviour of thin AA2024 specimens. Int J Fatigue. 2017;98:223–233. doi:10.1016/j.ijfatigue.2017.01.042.
  • Guan L, Ye ZX, Yang XY, et al. Pitting resistance of 316 stainless steel after laser shock peening: determinants of microstructural and mechanical modifications. J Mater Process Technol. 2021;294(December 2020). doi:10.1016/j.jmatprotec.2021.117091.
  • Karthik D, Swaroop S. Influence of laser peening on phase transformation and corrosion resistance of AISI 321 steel. J Mater Eng Perform. 2016;25(7):2642–2650. doi:10.1007/s11665-016-2158-5.
  • Karthik D, Kalainathan S, Swaroop S. Surface modification of 17-4 PH stainless steel by laser peening without protective coating process. Surf Coatings Technol. 2015;278:138–145. doi:10.1016/j.surfcoat.2015.08.012.
  • Spadaro L, Gomez-Rosas G, Rubio-González C, et al. Fatigue behavior of superferritic stainless steel laser shock treated without protective coating. Opt Laser Technol. 2017;93:208–215. doi:10.1016/j.optlastec.2017.03.003.
  • Spadaro L, Hereñú S, Strubbia R, et al. Effects of laser shock processing and shot peening on 253 MA austenitic stainless steel and their consequences on fatigue properties. Opt Laser Technol. 2020;122(August 2019):105892. doi:10.1016/j.optlastec.2019.105892.
  • Rai AK, Biswal R, Gupta RK, et al. Study on the effect of multiple laser shock peening on residual stress and microstructural changes in modified 9Cr–1Mo (P91) steel. Surf Coatings Technol. 2019;358(July 2018):125–135. doi:10.1016/j.surfcoat.2018.11.027.
  • Wu LJ, Luo KY, Liu Y, et al. Effects of laser shock peening on the micro-hardness, tensile properties, and fracture morphologies of CP-Ti alloy at different temperatures. Appl Surf Sci. 2018;431:122–134. doi:10.1016/j.apsusc.2017.05.202.
  • Zhou JZ, Huang S, Zuo LD, et al. Effects of laser peening on residual stresses and fatigue crack growth properties of Ti–6Al–4V titanium alloy. Opt Lasers Eng. 2014;52(1):189–194. doi:10.1016/j.optlaseng.2013.06.011.
  • Tong ZP, Ren XD, Zhou WF, et al. Effect of laser shock peening on wear behaviors of TC11 alloy at elevated temperature. Opt Laser Technol. 2019;109:139–148. doi:10.1016/j.optlastec.2018.07.070.
  • Huang S, Zhao J, Sheng J, et al. Effect of laser peening with different power densities on vibration fatigue resistance of hydrogenated TC4 titanium alloy. Int J Fatigue. 2020;131(July 2019):105335. doi:10.1016/j.ijfatigue.2019.105335.
  • Kumar D, Nadeem Akhtar S, Kumar Patel A, et al. Tribological performance of laser peened Ti–6Al–4V. Wear. 2015;322–323:203–217. doi:10.1016/j.wear.2014.11.016.
  • Tong Z, Ren X, Ren Y, et al. Effect of laser shock peening on microstructure and hot corrosion of TC11 alloy. Surf Coatings Technol. 2018;335:32–40. doi:10.1016/j.surfcoat.2017.12.003.
  • Chen L, Ren X, Zhou W, et al. Evolution of microstructure and grain refinement mechanism of pure nickel induced by laser shock peening. Mater Sci Eng A. 2018;728(April):20–29. doi:10.1016/j.msea.2018.04.105.
  • Karthik D, Swaroop S. Laser shock peening enhanced corrosion properties in a nickel based inconel 600 superalloy. J Alloys Compd. 2017;694:1309–1319. doi:10.1016/j.jallcom.2016.10.093.
  • Amini S, Dadkhah M, Teimouri R. Study on laser shock penning of incoloy 800 super alloy. Optik (Stuttg). 2017;140:308–316. doi:10.1016/j.ijleo.2017.04.066.
  • Zhou L, Li Y, He W, et al. Effect of multiple laser shock processing on microstructure and mechanical properties of Ti–5Al–4Mo–4Cr–2Sn–2Zr titanium alloy. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met Mater Eng. 2014;43(5):1067–1072. doi:10.1016/s1875-5372(14)60102-8.
  • Lu JZ, Qi H, Luo KY, et al. Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies. Corros Sci. 2014;80:53–59. doi:10.1016/j.corsci.2013.11.003.
  • Madariaga A, Arrazola PJ, Esnaola JA, et al. Evolution of residual stresses induced by machining in a nickel based alloy under static loading at room temperature. Procedia CIRP. 2014;13:175–180. doi:10.1016/j.procir.2014.04.030.
  • Nie X, He W, Zang S, et al. Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts. Surf Coatings Technol. 2014;253:68–75. doi:10.1016/j.surfcoat.2014.05.015.
  • Dane CB, Hackel LA, Daly J, et al. Shot peening with lasers. Adv Mater Process. 1998;153(5):37–38.
  • Maawad E, Brokmeier HG, Wagner L, et al. Investigation on the surface and near-surface characteristics of Ti–2.5Cu after various mechanical surface treatments. Surf Coatings Technol. 2011;205(12):3644–3650. doi:10.1016/j.surfcoat.2011.01.001.
  • Mhaede M, Sano Y, Altenberger I, et al. Fatigue performance of Al7075-T73 and Ti–6Al–4V : comparing results after shot peening, laser shock peening and ball- burnishing. Proc. Shot Peen. - ICSP11. 2011: 2–7.
  • Guo YB, Caslaru R. Fabrication and characterization of micro dent arrays produced by laser shock peening on titanium Ti–6Al–4V surfaces. J Mater Process Technol. 2011;211(4):729–736. doi:10.1016/j.jmatprotec.2010.12.007.
  • Zabeen S., Preuss M, Withers PJ. Residual stresses caused by head-on and 45° foreign object damage for a laser shock peened Ti-6Al-4V alloy aerofoil. Mater Sci Eng A. 2013;560:518–527. doi:10.1016/j.msea.2012.09.097.
  • Smith PR, Shepard MJ, Prevéy PS, et al. Effect of power density and pulse repetition on laser shock peening of Ti–6Al–4V. J Mater Eng Perform. 2000;9(1):33–37. doi:10.1361/105994900770346259.
  • Li Y, Zhou L, He W, et al. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures. Sci Technol Adv Mater. 2013;14(5):055010. doi:10.1088/1468-6996/14/5/055010.
  • Chandrasekar G, Kailasanathan C, Verma DK. Investigation on un-peened and laser shock peened weldment of inconel 600 fabricated by ATIG welding process. Mater Sci Eng A. 2017;690(March):405–417. doi:10.1016/j.msea.2017.03.008.
  • Sano Y, Obata M, Kubo T, et al. Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating. Mater Sci Eng A. 2006;417(1–2):334–340. doi:10.1016/j.msea.2005.11.017.
  • Ganesh P, Sundar R, Kumar H, et al. Studies on fatigue life enhancement of pre-fatigued spring steel specimens using laser shock peening. Mater Des. 2014;54:734–741. doi:10.1016/j.matdes.2013.08.104.
  • Sano Y, Masaki K, Gushi T, et al. Improvement in fatigue performance of friction stir welded A6061-T6 aluminum alloy by laser peening without coating. Mater Des. 2012;36:809–814. doi:10.1016/j.matdes.2011.10.053.
  • Gao YK. Improvement of fatigue property in 7050-T7451 aluminum alloy by laser peening and shot peening. Mater Sci Eng A. 2011;528(10–11):3823–3828. doi:10.1016/j.msea.2011.01.077.
  • Anand Kumar S, Sundar R, Ganesh Sundara Raman S, et al. Influence of laser peening on microstructure and fatigue lives of Ti–6Al–4V. Trans Nonferrous Met Soc China (English Ed.). 2014;24(10):3111–3117. doi:10.1016/S1003-6326(14)63449-X.
  • Cuellar SD, Hill MR, Dewald AT, et al. Residual stress and fatigue life in laser shock peened open hole samples. Int J Fatigue. 2012;44:8–13. doi:10.1016/j.ijfatigue.2012.06.011.
  • Luo KY, Yin YF, Wang CY, et al. Effects of laser shock peening with different coverage layers on fatigue behaviour and fractural morphology of Fe-Cr alloy in NaCl solution. J Alloys Compd. 2019;773:168–179. doi:10.1016/j.jallcom.2018.09.147.
  • Wagner L, Mhaede M, Wollmann M, et al. Surface layer properties and fatigue behavior in Al 7075-T73 and Ti–6Al–4V comparing results after laser peening; shot peening and ball-burnishing. Int J Struct Integr. 2011;2(2):185–199. doi:10.1108/17579861111135923.
  • Luong H, Hill MR. The effects of laser peening and shot peening on high cycle fatigue in 7050-T7451 aluminum alloy. Mater Sci Eng A. 2010;527(3):699–707. doi:10.1016/j.msea.2009.08.045.
  • Masaki K, Ochi Y, Matsumura T, et al. Effects of laser peening treatment on high cycle fatigue properties of degassing-processed cast aluminum alloy. Mater Sci Eng A. 2007;468–470(SPEC. ISS.):171–175. doi:10.1016/j.msea.2006.09.126.
  • Ye C, Suslov S, Kim BJ, et al. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening. Acta Mater. 2011;59(3):1014–1025. doi:10.1016/j.actamat.2010.10.032.
  • Pistochini TE, Hill MR. Effect of laser peening on fatigue performance in 300M steel. Fatigue Fract Eng Mater Struct. 2011;34(7):521–533. doi:10.1111/j.1460-2695.2010.01544.x.
  • Soyama H. Erratum to “comparison between the improvements made to the fatigue strength of stainless steel by cavitation peening, water jet peening, shot peening and laser peening”. Journal of Materials Processing Tech. (2019) 269, 65–78). J Mater Process Technol. 2019;270(March):381–382. doi:10.1016/j.jmatprotec.2019.03.008.
  • Ganesh P, Sundar R, Kumar H, et al. Studies on laser peening of spring steel for automotive applications. Opt Lasers Eng. 2012;50(5):678–686. doi:10.1016/j.optlaseng.2011.11.013.
  • Ye C, Cheng GJ. Fatigue performance improvement by dynamic strain aging and dynamic precipitation in warm laser shock peening of AISI 4140 steel. ASME 2010 Int Manuf Sci Eng Conf MSEC 2010. 2010;2(3):317–325. doi:10.1115/MSEC2010-34301.
  • Dorman M, Toparli MB, Smyth N, et al. Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects. Mater Sci Eng A. 2012;548:142–151. doi:10.1016/j.msea.2012.04.002.
  • Huang S, Zhou JZ, Sheng J, et al. Effects of laser energy on fatigue crack growth properties of 6061-t6 aluminum alloy subjected to multiple laser peening. Eng Fract Mech. 2013;99:87–100. doi:10.1016/j.engfracmech.2013.01.011.
  • Pant BK, Pavan AHV, Prakash RV, et al. Effect of laser peening and shot peening on fatigue striations during FCGR study of Ti6Al4V. Int J Fatigue. 2016;93:38–50. doi:10.1016/j.ijfatigue.2016.08.005.
  • Sun R, Li L, Guo W, et al. Laser shock peening induced fatigue crack retardation in Ti-17 titanium alloy. Mater Sci Eng A. 2018;737(July):94–104. doi:10.1016/j.msea.2018.09.016.
  • Sheng J, Huang S, Zhou JZ, et al. Effect of laser peening with different energies on fatigue fracture evolution of 6061-T6 aluminum alloy. Opt Laser Technol. 2016;77:169–176. doi:10.1016/j.optlastec.2015.09.008.
  • Holzapfel H, Schulze V, Vohringer O, et al. Residual stress relaxation in an AISI 4140 steel due to quasistatic and cyclic loading at higher temperatures. Mater Sci Eng A. 1998;248(1-2):9–18. doi:10.1016/s0921-5093(98)00522-x.
  • Wang JT, Zhang YK, Chen JF, et al. Effect of laser shock peening on the high-temperature fatigue performance of 7075 aluminum alloy. Mat Sci Eng A. 2017;704:459–468. doi:10.1016/j.msea.2017.08.050.
  • Zhou Z, Gill AS, Qian D, et al. A finite element study of thermal relaxation of residual stress in laser shock peened IN718 superalloy. Int J Impact Eng. 2011;38(7):590–596. doi:10.1016/j.ijimpeng.2011.02.006.
  • Altenberger I, Stach EA, Liu G, et al. An in situ transmission electron microscope study of the thermal stability of near-surface microstructures induced by deep rolling and laser-shock peening. Scr Mater. 2003;48(12):1593–1598. doi:10.1016/S1359-6462(03)00143-X.
  • Medvedeva A, Bergström J, Gunnarsson S, et al. Thermally activated relaxation behaviour of shot-peened tool steels for cutting tool body applications. Mater Sci Eng A. 2011;528(3):1773–1779. doi:10.1016/j.msea.2010.11.010.
  • Zhou J, Sun Y, Huang S, et al. Effect of laser peening on friction and wear behavior of medical Ti6Al4V alloy. Opt Laser Technol. 2019;109(July 2018):263–269. doi:10.1016/j.optlastec.2018.08.005.
  • Sánchez-Santana U, Rubio-González C, Gomez-Rosas G, et al. Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing. Wear. 2006;260(7–8):847–854. doi:10.1016/j.wear.2005.04.014.
  • Lu JZ, Luo KY, Dai FZ, et al. Effects of multiple laser shock processing (LSP) impacts on mechanical properties and wear behaviors of AISI 8620 steel. Mater Sci Eng A. 2012;536:57–63. doi:10.1016/j.msea.2011.12.053.
  • Guo Y, Wang S, Liu W, et al. Effect of laser shock peening on tribological properties of magnesium alloy ZK60. Tribol Int. 2020;144(September 2019):106138. doi:10.1016/j.triboint.2019.106138.
  • Aldajah SH, Ajayi OO, Fenske GR, et al. Effect of laser surface modifications tribological performance of 1080 carbon steel. J Tribol. 2005;127(3):596–604. doi:10.1115/1.1924461.
  • Yakimets I, Richard C, Béranger G, et al. Laser peening processing effect on mechanical and tribological properties of rolling steel 100Cr6. Wear. 2004;256(3–4):311–320. doi:10.1016/S0043-1648(03)00405-8.
  • Ge MZ, Xiang JY, Tang Y, et al. Wear behavior of Mg–3Al–1Zn alloy subjected to laser shock peening. Surf Coatings Technol. 2018;337(September 2017):501–509. doi:10.1016/j.surfcoat.2018.01.043.
  • Zabeen S, Langer K, Fitzpatrick ME. Effect of texture on the residual stress response from laser peening of an aluminium-lithium alloy. J Mater Process Technol. 2018;251(April 2017):317–329. doi:10.1016/j.jmatprotec.2017.07.032.
  • Yang Q, Zhou W, Gai P, et al. Investigation on the fretting fatigue behaviors of Ti–6Al–4V dovetail joint specimens treated with shot-peening. Wear. 2017;372–373:81–90. doi:10.1016/j.wear.2016.12.004.
  • Trdan U, Skarba M, Porro JA, et al. Application of massive laser shock processing for improvement of mechanical and tribological properties. Surf Coatings Technol. 2018;342(March):1–11. doi:10.1016/j.surfcoat.2018.02.084.
  • Ballard P, Fournier J, Fabbro R, et al. Residual stresses induced by laser-shocks. J Phys IV. 1991;01:C3-487–C3-494. doi:10.1051/JP4:1991369.
  • Braisted W, Brockman R. Finite element simulation of laser shock peening. Int J Fatigue. 1999;21(7):719–724. doi:10.1016/S0142-1123(99)00035-3.
  • Hfaiedh N, Peyre P, Song H, et al. Finite element analysis of laser shock peening of 2050-T8 aluminum alloy. Int J Fatigue. 2015;70:480–489. doi:10.1016/j.ijfatigue.2014.05.015.
  • Wang C, Li K, Hu X, et al. Numerical study on laser shock peening of TC4 titanium alloy based on the plate and blade model. Opt Laser Technol. 2021;142(January 2021):107163. doi:10.1016/j.optlastec.2021.107163.
  • Zhang H, Cai Z, Guo W, et al. Experimental and numerical studies of fatigue behavior of Ti6Al4V alloy treated by laser shock peening. Surf Coatings Technol. 2022;441(March):128524. doi:10.1016/j.surfcoat.2022.128524.
  • Li X, He W, Luo S, et al. Simulation and experimental study on residual stress distribution in titanium alloy treated by laser shock peening with flat-top and Gaussian laser beams. Materials (Basel). 2019;12(8):1343. doi:10.3390/ma12081343.
  • Zhou W, Ren X, Yang Y, et al. Finite element analysis of laser shock peening induced near-surface deformation in engineering metals. Opt Laser Technol. 2019;119(May):105608. doi:10.1016/j.optlastec.2019.105608.
  • Keller S, Chupakhin S, Staron P, et al. Experimental and numerical investigation of residual stresses in laser shock peened AA2198. J Mater Process Technol. 2018;255(November 2017):294–307. doi:10.1016/j.jmatprotec.2017.11.023.
  • Mylavarapu P, Bhat C, Perla MKR, et al. Identification of critical material thickness for eliminating back reflected shockwaves in laser shock peening – a numerical study. Opt Laser Technol. 2021;142(October 2020):107217. doi:10.1016/j.optlastec.2021.107217.
  • Zhang X, Li H, Duan S, et al. Modeling of residual stress field induced in Ti–6Al–4V alloy plate by two sided laser shock processing. Surf Coatings Technol. 2015;280:163–173. doi:10.1016/j.surfcoat.2015.09.004.
  • Wang X, Chen B, Zhang F, et al. Numerical simulation on laser shock peening of B4C-TiB2 composite ceramics. Materials (Basel). 2023;16(3):1033. doi:10.3390/ma16031033.
  • Vasu A, Hu Y, Grandhi RV. Differences in plasticity due to curvature in laser peened components. Surf Coatings Technol. 2013;235:648–656. doi:10.1016/j.surfcoat.2013.08.043.
  • Kalentics N, Huang K, Ortega Varela de Seijas M, et al. Laser shock peening: a promising tool for tailoring metallic microstructures in selective laser melting. J Mater Process Technol. 2019;266(July 2018):612–618. doi:10.1016/j.jmatprotec.2018.11.024.
  • Kalentics N, Sohrabi N, Tabasi HG, et al. Healing cracks in selective laser melting by 3D laser shock peening. Addit Manuf. 2019;30(August):100881. doi:10.1016/j.addma.2019.100881.
  • Ouyang P, Luo X, Dong Z, et al. Numerical prediction of the effect of laser shock peening on residual stress and fatigue life of Ti–6Al–4V titanium alloy. Materials (Basel). 2022;15(16):5503. doi:10.3390/ma15165503.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.