370
Views
1
CrossRef citations to date
0
Altmetric
Articles

Growth characteristics of scanning micro-arc oxidation coating on Ti6Al4V alloy

, , &
Pages 218-228 | Received 10 Dec 2022, Accepted 24 Apr 2023, Published online: 10 May 2023

References

  • Dai WB, Zhang XL, Li CY, et al. Effect of thermal conductivity on micro-arc oxidation coatings. Surf Eng. 2022;38(1):44–53.
  • Zheng ZR, Zhao MC, Tan LL, et al. Biodegradation behaviour of hydroxyapatite-containing self-sealing micro-arc-oxidation coating on pure Mg. Surf Eng. 2021;37(7):942–952.
  • Wu GL, Wang Y, Sun M, et al. Influence of microstructure of TC4 substrate on the MAO coating. Surf Eng. 2020;36(8):827–836.
  • Mosab K, Siti F, Nisa N, et al. Recent progress in surface modification of metals coated by plasma electrolytic oxidation: principle, structure, and performance. Prog Mater Sci. 2021;117:100735.
  • Demirbaş C, Ayday A. Effect of Ag concentration on structure and wear behaviour of coatings formed by micro-arc oxidation on Ti6Al4V Alloy. Surf Eng. 2021;37(1):24–31.
  • Wei YJ, Hu Y, Li MR, et al. Fabrication of Sr-functionalized micro/nano-hierarchical structure ceramic coatings on 3D printing titanium. Surf Eng. 2021;37:373–380.
  • Wen L, Wang Y, Jin Y, et al. Microarc oxidation of 2024 Al alloy using spraying polar and its influence on microstructure and corrosion behavior. Surf Coat Technol. 2013;228:92–99.
  • Xia LQ, Han JM, Domblesky JP, et al. Study of scanning micro-arc oxidation and coating development. J Mater Eng Perform. 2017;26(11):5323–5332.
  • Melhem A, Henrion G, Czerwiec T, et al. Changes induced by process parameters in oxide layers grown by the PEO process on Al alloys. Surf Coat Technol. 2011;205(4):S133–S136.
  • Pogrebnjak AD, Tyurin YN. The structure and properties of Al2O3 and Al coatings deposited by microarc oxidation on graphite substrates. Tech Phys. 2004;49:1064–1067.
  • Gu WC, Lv GH, Chen H, et al. PEO protective coatings on inner surface of tubes. Surf Coat Technol. 2007;201(15):6619–6622.
  • Lv PX, Chi GX, Wei DB, et al. Design of scanning micro-arc oxidation forming ceramic coatings on 2024 aluminum alloy. Adv Mater Res. 2011;189–193:1296–1300.
  • Lv PX, Wei DB, Guo CB, et al. Study on scanning micro-arc oxidation technology applied to 2024 aluminum alloy. J Inorg Mater. 2013;28(4):381–386.
  • Clare AT, Speidel A, Mitchell-Smith J, et al. Surface enhanced micro features using electrochemical jet processing. CIRP Ann. 2019;68:177–180.
  • Shen XW, Nie XY, Tjong JM. Effects of electrolytic jet plasma oxidation (EJPO) coatings on thermal behavior of engine cylinders. Heat Mass Transfer. 2019;55:2503–2515.
  • Lu JJ, Zhan SD, Liu BW, et al. Plasma-enabled electrochemical jet micromachining of chemically inert and passivating material. Int J Extrem Manuf. 2022;4:045101.
  • Hussein RO, Nie X, Northwood DO, et al. Spectroscopic study of electrolytic plasma and discharging behavior during the plasma electrolytic oxidation (PEO) process. J Phys D: Appl Phys. 2010;43:105203–105216.
  • Venkateswarlu K, Rameshbabu N, Sreekanth D, et al. Role of electrolyte chemistry on electronic and in vitro electrochemical properties of micro-arc oxidized titania films on Cp Ti. Electrochim Acta. 2013;105:468–480.
  • Mortazavi G, Jiang J, Meletis EI. Investigation of the plasma electrolytic oxidation mechanism of titanium. Appl Surf Sci. 2019;488:370–382.
  • Han JX, Cheng YL, Tu WB, et al. The black and white coatings on Ti–6Al–4V alloy or pure titanium by plasma electrolytic oxidation in concentrated silicate electrolyte. Appl Surf Sci. 2018;428:684–697.
  • Matykina E, Skeldon P, Thompson GE. Fundamental and practical evaluation of plasma electrolytic oxidation coatings of titanium. Surf Eng. 2013;23(6):412–418.
  • Li QB, Yang WB, Liu CC, et al. Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: effects of electrolytes. Surf Coat Technol. 2017;316:162–170.
  • Wang HB, Zhai DJ, Feng KQ. Effect of the microstructure of a titanium alloy fabricated using selective laser melting on microarc oxidation film. Metall Mater Trans A. 2021;52(10):4691–4702.
  • Stojadinovic S, Vasilic R, Petkovic M, et al. Characterization of the plasma electrolytic oxidation of titanium in sodium metasilicate. Appl Surf Sci. 2013;265:226–233.
  • Tekin KC, Malayoglu U, Shrestha S. Tribological behaviour of plasma electrolytic oxide coatings on Ti6Al4V and cp-Ti alloys. Surf Eng. 2016;32(6):435–442.
  • Tekin KC, Malayoglu U. Production of plasma electrolytic oxide coatings on Ti6Al4V alloy in aluminate-based electrolytes. Surf Eng. 2016;33(10):787–795.
  • Sun CW, Hui B, Qu W, et al. Effects of processing parameters on microstructures of TiO2 coatings formed on titanium by plasma electrolytic oxidation. J Master Sci. 2010;45:6235–5241.
  • Viornery C, Chevolot Y, Léonard D, et al. Surface modification of titanium with phosphonic acid to improve bone bonding: characterization by XPS and ToFSIMS. Langmuir. 2002;18:2582–2589.
  • Yan N, Wang F, Zhong H, et al. Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries. Sci Rep. 2013;2013(3):1568.
  • Dementjev AP, Ivanova OP, Vasilyev LA, et al. Altered layer as sensitive initial chemical state indicator. J Vac Sci Technol A. 1994;12:423–427.
  • Miller ML, Linton RW. X-ray photoelectron spectroscopy of thermally treated SiO2 surfaces. Anal Chem. 1985;57(13):2314–2319.
  • Saha NC, Tompkins HG. Titanium nitride oxidation chemistry: an X-ray photoelectron spectroscopy study. J Appl Phys. 1992;72(7):3072–3079.
  • Gibaek L, Kim S, Kim S, et al. Sio2/TiO2 composite film for high capacity and excellent cycling stability in lithium-ion battery anodes. Adv Funct Mater. 2017;27(39):1703538.
  • Wang YM, Jiang BL, Lei TQ, et al. Microarc oxidation coatings formed on Ti6Al4V in Na2SiO3 system solution: microstructure, mechanical and tribological properties. Surf Coat Technol. 2006;201(1–2):82–89.
  • Wheeler JM, Collier CA, Paillard JM, et al. Evaluation of micromechanical behaviour of plasma electrolytic oxidation (PEO) coatings on Ti–6Al–4V. Surf Coat Technol. 2010;204(21–22):3399–3409.
  • Yavari SA, Necula BS, Fratila-Apachitei LE, et al. Biofunctional surfaces by plasma electrolytic oxidation on titanium biomedical alloys. Surf Eng. 2016;32(6):411–417.
  • Hanaor DAH, Sorrell CC. Review of the anatase to rutile phase transformation. J Mater Sci. 2011;46(4):855–874.
  • Wu GL, Wang Y, Sun M, et al. Effect of laser surface melting pretreatment on the growth behavior and mechanical properties of microarc oxidation coating on Ti6Al4V alloy. J Laser Appl. 2020;32:012013.
  • Wang Y, Yin YY, Wu GL, et al. The microstructure and cavitation erosion resistance of Ti6Al4V alloy treated by laser gas nitriding with scanning galvanometer. Opt Laser Technol. 2022;153:108270.
  • Xu G, Shen X. Fabrication of SiO2 nanoparticles incorporated coating onto titanium substrates by the micro arc oxidation to improve the wear resistance. Surf Coat Technol. 2019;364:180–186.
  • Malayoglu U, Tekin KC, Malayogulu U, et al. Mechanical and electrochemical properties of PEO coatings on zirconium alloy. Surf Eng. 2020;36(8):800–808.
  • Luo SS, Wang Q, Ye RF, et al. Effects of electrolyte concentration on the microstructure and properties of plasma electrolytic oxidation coatings on Ti–6Al–4V alloy. Surf Coat Technol. 2019;375:864–876.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.