158
Views
0
CrossRef citations to date
0
Altmetric
Articles

Influence of different modes of microarc oxidation of titanium on the electrochemical properties and surface morphology of the obtained coatings

, , , , , , & show all
Pages 295-306 | Received 14 Jan 2023, Accepted 05 Jun 2023, Published online: 21 Jun 2023

References

  • Titanium Backbone of the Country. Exposure Oil Gas, (2009), 3, p. 10-11, https://cyberleninka.ru/article/n/titanovaya-opora-derzhavy.
  • Sibum H, Güther V, Roidl O, et al. Titanium, titanium alloys, and titanium compounds. In: Ullmann’s encyclopedia of industrial chemistry, Hoboken, NJ, USA: Wiley-VHC; 2017, p. 4–6. doi:10.1002/14356007.a27_095.pub2
  • Vijayaram TR, Natarajan MP, Ramarao M, et al. Titanium and titanium alloys: advanced materials for engineering industries. Compl Eng J. 2021;12(10):116–127. https://www.researchgate.net/publication/355903268.
  • Ilyin AA, Kolachev BA, Polkin IS. Titanium alloys. composition, structure, properties. Moscow: VILS-MATI; 2009.
  • Tomashov ND. Titanium and corrosion-resistant alloys based on it. Moscow: Metallurgy; 1985; 80 p.
  • Titanium Alloys - Corrosion and Erosion Resistance. https://www.azom.com/article.aspx?ArticleID = 1336. Available: 2022.12.07.
  • Phull B, Abdullahi AA. Marine corrosion. Refer Modul Mater Sci Mater Eng. 2017;2:1107–1148. doi:10.1016/B978-0-12-803581-8.09209-2
  • Encyclopedia of modern technology. In 3 volumes. Corrosion of titanium alloys. (1964), Soviet Encyclopedia, Moscow, 1632 p.
  • Corrosion. Reference book. Ed. L.L. Shraer, Moscow: Metallurgy; 1981, 632 p.
  • Mainier FB, Monteiro LPC, Tavares SSM, et al. Evaluation of titanium in hydrochloric acid solutions containing corrosion inhibitors. IOSR J Mechan Civil Eng. 2013;10(1):66–69. https://www.iosrjournals.org/iosr-jmce/pages/v10i1.html.
  • Kornienko GV, Orlina EA, Chaenko NV, et al. Electrochemical oxidation of phenol on a ruthenium-titanium oxide anode with the addition of reactive oxygen species generated in situ from molecular oxygen, hydrogen peroxide and water. JSiber Fed Univ. Chem. 2014;2:200–208.
  • Aliofkhazraei M, Macdonald DD, Matykina E, et al. Review of plasma electrolytic oxidation of titanium substrates: mechanism, properties, applications and limitations. Appl Surf Sci Adv. 2021;5:1–67. doi:10.1016/j.apsadv.2021.100121
  • How Keronite is improving material technologies in the defence sector, https://blog.keronite.com/how-keronite-is-improving-material-technologies-in-the-defence-sector, (2020).
  • Ramazanova Z, Kudasova DK, Zamalitdinova MG, et al. Review of technologies for obtaining coatings on titanium and its alloys by plasma electrolytic oxidation. Reliabil Qual. 2018;2:153–156.
  • Belkin PN, Borisov AM, Vasin VA, et al. Modern technologies of modification of a surface of materials and protective coating, Vol I. Renome: Moscow-StPetersburg; 2017, 648 p.
  • Rakoch AG, Dub AV, Gladkova AA. Anodization of light alloys under various electric modes. plasma-electrolytic nanotechnology. Moscow: Old Basmannaya; 2012, 469 p.
  • Gordienko PS, Gnedenkov SV. Microarc oxidation of titanium and its alloys. Dalnauka: Vladivostok; 1997. 186 p.
  • Legostaeva EV, Sharkeev YP, Mattias E, et al. Structure and properties of microarc calcium phosphate coatings on the surface of titanium and zirconium alloys. Russ Phys J. 2013;10:23–28.
  • Vasilyeva MS, Rudnev VS, Sklyarenko OE. Titanium-Based nickel-copper oxide CO catalysts. Russ J Gen Chem. 2010;80(8):1247–1252.
  • Bogdashkina NL, Gerasimov MV, Zalavutdinov RH, et al. Influence of nickel sulfate additives to electrolytes subjected to microarc oxidation on the structure, composition, and properties of coatings formed on titanium. Surf Eng Appl Electrochem. 2018;54(4):331–337. doi:10.3103/S106837551804004X
  • Borisov AM, Krit BL, Lyudin VB, et al. Microarc oxidation in slurry electrolytes: A review. Surf Eng Appl Electrochem. 2016;52(1):50–78. doi:10.3103/S106837551601004X
  • Kalubarme RS, Inamdar AI, Bhange DS, et al. Nickel-titanium oxide as a novel anode material for rechargeable sodium-ion batterie. J Mater Chem A. 2016;4:17419–17430.
  • Rossina NG, Popov NA, Zhilyakova MA, et al. Corrosion and protection of metals. Yekaterinburg: Ural University Publishing House; 2019.,108 p.
  • McCafferty E. Introduction to corrosion science. New York: Springer; 2010, 575 p. doi:10.1007/978-1-4419-0455-3
  • Stoynov ZB, Grafov BM, Savova-Stoynova B, et al. Electrochemical impedance. Moscow: Nauka; 1991; 336 p.
  • Macdonald JR, Barsoukov E. Impedance spectroscopy: theory, experiment, and applications. 3rd ed. Hoboken: John Wiley & Sons Inc.; 2018, 560 p
  • Bobkov A, Luchinin V, Moshnikov V, et al. Impedance spectroscopy of hierarchical porous nanomaterials based on por-Si, por-Si incorporated by Ni and metal oxides for Gas sensors. Sensors. 2022;22:1–14. doi:10.3390/s22041530
  • Shcherbakov AI, Korosteleva IG, Kasatkina IV, et al. Impedance of aluminum electrode with nanoporous oxide. Protect Metal Phys Chem Surf. 2019;55(4):396–401.
  • Shcherbakov AI, Korosteleva IG, Kasatkina IV, et al. Using frequency impedance spectroscopy to study the properties of cobalt-modified nanoporous alumina. Protec Metal Phys Chem Surf. 2020;56:288–294. doi:10.1134/S2070205120020227
  • Kasatkin VE, Kornienko LP, Shcherbakov AI, et al. Effect of sodium hydroxide concentration on nickel surface state: experience in EIS methods applying. Electrocatalysis. 2022;13:539–550. doi:10.1007/s12678-022-00735-5
  • Tomashov ND, Chernova GP. Theory of corrosion and corrosion-resistant constructional alloys. Metallurgy, Moscow, Russia. 1993: p. 18–23. ISBN 5-229-00923-3.
  • Ferraris S, Spriano S. Porous titanium by additive manufacturing: A focus on surfaces for bone integration. Metals (Basel). 2021;11:1–12.
  • Li Y, Zhou Q, Liu M. Effect of novel surface treatment on corrosion behavior and mechanical properties of a titanium alloy. Baosteel Tech. Res. 2021;15:11–19.
  • Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C. 2019;102:844–862.
  • Prasad S, Ehrensberger M, Gibson MP, et al. Biomaterial properties of titanium dentistry. J. Oral Biosci. 2015;57:192–199.
  • Mashtalyar DV, Nadaraia KV, Pleknova NG. Antibacterial CaP-coatings formed on Mg alloy using plasma electrolytic oxidation and antibiotic impregnation. Mater Lett. 2022;317; doi:10.1016/j.matlet.2022.132099
  • Grigoriev S, Peretyagin N, Apelfeld A, et al. Investigation of MAO coatings characteristics on titanium products obtained by EBM method using additive manufacturing. Materials (Basel). 2022;15(13):1–11.
  • Guo Y, Xu L, Luan J, et al. Effect of carbon nanotubes additive on tribocorrosion performance of micro-arc oxidized coatings on Ti6Al4V alloy. Surf. Interfaces. 2022;28:101626.
  • Bogdashkina NL, Gerasimov MV, Zalavutdinov RK, et al. Influence of nickel sulfate additives to electrolytes subjected to microarc oxidation on the structure, composition and properties of coatings formed on titanium. Surf. Eng. Appl. Electrochem. 2018;54:331–337.
  • Shokouhfar M, Allahkaram S. Effect of incorporation of nanoparticles with different composition on wear and corrosion behavior of ceramic coatings developed on pure titanium by micro arc oxidation. Surf. Coat.Technol. 2017;309:767–778.
  • Gao Y, Yang W, Xu D, et al. Microstructure and properties of graphene oxide-doped TiO2 coating titanium by micro Arc oxidation. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2018;33:1524–1529.
  • Wang J, Liu L, Yang M, et al.; modification effect of graphene oxide oxidation coating of Ti-3Zr-2Sn-3Mo-25 Nb near-β titanium alloy. J. Alloys Compd. 2022;901:163561.
  • Mashtalyar DV, Gnedenkov SV, Sinebryukhov SL, et al. Plasma electrolytic oxidation of the magnesium alloy MA8 in electrolytes containing TiN nanoparticles. J. Mater. Sci. Technol. 2017;33(5):461–468.
  • Gerasimov MV, Bogdashkina NL. Method for processing titanium and its alloys in order to increase its corrosion resistance and electrolyte for microarc oxidation of titanium and its alloys in order to increase corrosion resistance. Pat.RU2756672C1, Publication 2021-10-04.
  • Sibileva SV, Kozlova LS. Review of technologies for obtaining coatings on titanium alloys by plasma electrolytic oxidation. Aviat Mater Techn. 2016;S2(44):3–10. doi:10.18577/2071-9140-2016-0-S2-3-10
  • Borisov AM, Efremov AP, Kuleshov EA, et al. Evolution of dynamic VAC discharge in a metal-oxide-electrolyte system. Bullet Russian Acad Sci: Phys. 2002;66(8):1187–1191.
  • Khoshnaw F, Gubner R. Corrosion atlas case studies, part I: general aspects of corrosion, corrosion control, and corrosion prevention. Elsevier; 2022. xxv–xlii, doi:10.1016/C2020-0-00630-4
  • Gnedenkov SV, Sinebryukhov SL. Structure and morphological features of layers formed on the surface of titanium. Corros: Mater, Protec. 2004;2:2–8.
  • Tomkiewicz М. Relaxation spectrum analysis of semiconductor –electrolyte interface TiO2. J Electrochem Soc. 1979;126(12):2220–2225.
  • McCann JF, Badwal SPS. Equivalent circuit analysis of the impedance response of semiconductor/electrolyte/counterelectrode cells. J. Electrochem Soc. 1982;129(3):551–559.
  • Ukshe EA, Grafov BM. Electrochemical circuits of alternating current. Moscow: Nauka; 1973. 128 p.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.