135
Views
0
CrossRef citations to date
0
Altmetric
Articles

Investigation of the tribochemical reaction mechanism in dry-type CMP of 6H-SiC substrate

, , , &
Pages 361-370 | Received 26 Feb 2023, Accepted 06 Jun 2023, Published online: 03 Jul 2023

References

  • Shen Z, Sui H, Kerr V, et al. Effect of heat treatment on the interfacial bonding between SiC coating and alumina plate. Surf Eng. 2019;36(4):397–404. doi:10.1080/02670844.2019.1625128
  • Yi J, Huang JP, Song GP, et al. C/SiC composite coatings with ultra-high thermal emissivity. Surf Eng. 2020;37(4):514–518. doi:10.1080/02670844.2020.1795562
  • Millan J, Godignon P, Perpiñà X, et al. A survey of wide bandgap power semiconductor devices. IEEE Trans Power Electron. 2013;29(5):2155–2163. doi:10.1109/TPEL.2013.2268900
  • Zhou L, Audurier V, Pirouz P, et al. Chemomechanical polishing of silicon carbide. J Electrochem Soc. 2019;144(6):L161–L163. doi:10.1149/1.1837711
  • Pan G, Zhou Y, Luo G, et al. Chemical mechanical polishing (CMP) of on-axis Si-face 6H-SiC wafer for obtaining atomically flat defect-free surface. J Mater Sci Mater Electron. 2013;24(12):5040–5047. doi:10.1007/s10854-013-1519-1
  • Lu J, Chen R, Liang H, et al. The influence of concentration of hydroxyl radical on the chemical mechanical polishing of SiC wafer based on the Fenton reaction. Prec Eng. 2018;52:221–226. doi:10.1016/j.precisioneng.2017.12.011
  • Deng J, Pan J, Zhang Q, et al. The mechanism of Fenton reaction of hydrogen peroxide with single crystal 6H-SiC substrate. Surf Interfaces. 2020;21:100730. doi:10.1016/j.surfin.2020.100730
  • Hara H, Sano Y, Mimura H, et al. Novel abrasive-free planarization of 4H-SiC (0001) using catalyst. J Electron Mater. 2006;35(8):L11–L14. doi:10.1007/s11664-006-0218-6
  • Chen G, Ni Z, Xu L, et al. Performance of colloidal silica and ceria based slurries on CMP of Si-face 6H-SiC substrates. Appl Surf Sci. 2015;359:664–668. doi:10.1016/j.apsusc.2015.10.158
  • Zhang Q, Pan J, Zhang X, et al. Tribological behavior of 6H–SiC wafers in different chemical mechanical polishing slurries. Wear. 2021;472–473:203649. doi:10.1016/j.wear.2021.203649
  • Deng H, Hosoya K, Imanishi Y, et al. Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry. Electrochem Commun. 2015;52:5–8. doi:10.1016/j.elecom.2015.01.002
  • Károlyházy G, Beke D, Zalka D, et al. Novel method for electroless etching of 6H–SiC. Nanomaterials. 2020;10(3). doi:10.3390/nano10030538
  • Su J, Du J, Ma L, et al. Material removal rate of 6H-SiC crystal substrate CMP using an alumina (Al2O3) abrasive. J Semicond. 2012;33(10). doi:10.1088/1674-4926/33/10/106003
  • Wu Z, Zhang S, Chen H, et al. Tribo-oxidation and tribological behavior of TaC–20%SiC composites at elevated temperatures. J Tribol. 2023;145(2). doi:10.1115/1.4055845
  • Schreiber PJ, Schneider J. Liquid superlubricity obtained for self-mated silicon carbide in nonaqueous low-viscosity fluid. Tribol Int. 2019;134:7–14. doi:10.1016/j.triboint.2019.01.031
  • Kuhlmann-Wilsdorf D. Flash temperatures due to friction and Joule heat at asperity contacts. Wear. 1985;105(3):187–198. doi:10.1016/0043-1648(85)90067-5
  • Quinn TFJ. Computational methods applied to oxidational wear. Wear. 1996;199(2):169–180. doi:10.1016/0043-1648(95)06856-2
  • Wu M, Huang H, Luo Q, et al. A novel approach to obtain near damage-free surface/subsurface in machining of single crystal 4H-SiC substrate using pure metal mediated friction. Appl Surf Sci. 2022;588:152963. doi:10.1016/j.apsusc.2022.152963
  • Li BS, Sen HS, Daghbouj N, et al. Thermal behavior of iron in 6H-SiC: influence of He-induced defects. Scr Mater. 2022;218. doi:10.1016/j.scriptamat.2022.114805
  • Lim S, Oh J-S, Kwon Y, et al. Interfacial reactions in Ni/6H-SiC at low temperatures. J Nanosci Nanotechnol. 2016;16(10):10853–10857. doi:10.1166/jnn.2016.13252
  • Lin YC, Kao CH. A study on surface polishing of SiC with a tribochemical reaction mechanism. Int J Adv Manuf Technol. 2004;25(1–2):33–40. doi:10.1007/s00170-003-1873-x
  • Jacobson NS, Smialek JL. Corrosion pitting of SiC by molten salts. J Electrochem Soc. 2019;133(12):2615–2621. doi:10.1149/1.2108490
  • Zhang Y, Chen H, Liu D, et al. High efficient polishing of sliced 4H-SiC (0001) by molten KOH etching. Appl Surf Sci. 2020;525:146532. doi:10.1016/j.apsusc.2020.146532
  • Qi W, Cao X, Xiao W, et al. Study on the mechanism of solid-phase oxidant action in tribochemical mechanical polishing of SiC single crystal substrate. Micromachines. 2021;12(12):1547. doi:10.3390/mi12121547
  • Fu C-H, Lu H-L, Sun S-R. Density functional theory study for adsorption of oxygen and water molecules on 6H-SiC(0001) surface. Chin J Chem Phys. 2019;32(4):451–456. doi:10.1063/1674-0068/cjcp1810239
  • Pan Y, Baptista JL. Chemical instability of silicon carbide in the presence of transition metals. J Am Ceram Soc. 1996;79(8):2017–2026. doi:10.1111/j.1151-2916.1996.tb08932.x
  • Backhaus-Ricoult M. Solid state reactions between silicon carbide and various transition metals. Ber Bunsenges Phys Chem. 1989;93(11):1277–1281. doi:10.1002/bbpc.19890931127
  • Park JS, Landry K, Perepezko JH. Kinetic control of silicon carbide/metal reactions. Mater Sci Eng A. 1999;259(2):279–286. doi:10.1016/S0921-5093(98)00899-5
  • Schiepers RCJ, Loo FJJ, With G. Reactions between alpha-silicon carbide ceramic and nickel or iron. J Am Ceram Soc. 1988;71(6):C-284–C-287. doi:10.1111/j.1151-2916.1988.tb05903.x
  • Tang WM, Zheng ZX, Ding HF, et al. Control of the interface reaction between silicon carbide and iron. Mater Chem Phys. 2003;80(1):360–365. doi:10.1016/S0254-0584(02)00521-7
  • Tang WM, Zheng ZX, Ding HF, et al. A study of the solid state reaction between silicon carbide and iron. Mater Chem Phys. 2002;74(3):258–264. doi:10.1016/S0254-0584(01)00480-1
  • Pan Y, Baptista JL. Spontaneous infiltration of iron silicides into silicon carbide powder preforms. J Am Ceram Soc. 2000;83(12):2919–2924. doi:10.1111/j.1151-2916.2000.tb01661.x
  • Jacobson NS. Kinetics and mechanism of corrosion of SiC by molten salts. J Am Ceram Soc. 1986;69(1):74–82. doi:10.1111/j.1151-2916.1986.tb04698.x
  • Hirayama H, Kawakubo T, Goto A, et al. Corrosion behavior of silicon carbide in 290°C water. J Am Ceram Soc. 1989;72(11):2049–2053. doi:10.1111/j.1151-2916.1989.tb06029.x
  • Cappelen H, Johansen KH, Motzfeldt K. ChemInform abstract: oxidation of silicon carbide in oxygen and in water vapor at 1500°C. Acta Chem Scand Ser A. 1981;12(46):247–254. doi:10.1002/chin.198146035

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.