127
Views
1
CrossRef citations to date
0
Altmetric
Articles

Energy storehouse and a remarkable photocatalyst: Al2S3/Cu2S/Ni17S18 thin film as supercapacitor electrode and pollutants degradation

& ORCID Icon
Pages 371-386 | Received 30 Nov 2022, Accepted 05 Jun 2023, Published online: 15 Jun 2023

References

  • Ikumapayi OM, Akinlabi ET, Adeoye AOM, et al. Microfabrication and nanotechnology in manufacturing system–an overview. Mater Today Proc. 2021;44:1154–1162. doi:10.1016/j.matpr.2020.11.233
  • Gul MM, Ahmad KS. E-beam-deposited Zr2NiS4-GO alloy thin film, a tenacious photocatalyst and efficient electrode for electrical devices. J Mater Sci. 2022;57:7290–7309. doi:10.1007/s10853-022-07131-w
  • Gul MM, Ahmad KS. Electron beam deposited (Cu2S-CdS) GO thin film as active electrode for supercapacitor and enhanced photocatalyst for water remediation. Int J Energy Res. 2022;46:9371–9388. doi:10.1002/er.7811
  • Priyadarshini P, Das S, Naik R. A review on metal-doped chalcogenide films and their effect on various optoelectronic properties for different applications. RSC Adv. 2022;12:9599–9620. doi:10.1039/D2RA00771A
  • Wu L, Hofmann JP. High entropy transition metal chalcogenides as electrocatalysts for renewable energy conversion. Curr Opinion Electrochem. 2022:101010. doi:10.1016/j.coelec.2022.101010
  • Irfan M, Azam S, Dahshan A, et al. First-principles study of opto-electronic and thermoelectric properties of SrCdSnX4 (X = S, Se, Te) alkali metal chalcogenides. Comp Condens Matt. 2022;30:e00625.
  • Khan W, Din HU, Azam S, et al. First-principles investigations of metal chalcogenides Tl2Hg3X4 (X = S, Se, Te) for advanced optoelectronic and thermoelectric applications. J Solid State Chem. 2022;312:123199. doi:10.1016/j.jssc.2022.123199
  • Abouelela MM, Kawamura G, Matsuda A. Metal chalcogenide-based photoelectrodes for photoelectrochemical water splitting. J Energy Chem. 2022;73:189. doi:10.1016/j.jechem.2022.05.022
  • Hegde SS, Fernandes BJ, Talapatadur V, et al. Impedance spectroscopy analysis of SnS chalcogenide semiconductors. Mater Today Proc. 2022;62:5648–5652. doi:10.1016/j.matpr.2022.04.966
  • Saparov B. Next generation thin-film solar absorbers based on chalcogenides. Chem Rev. 2022;122:10575–10577. doi:10.1021/acs.chemrev.2c00346
  • Sarker JC, Hogarth G. Dithiocarbamate complexes as single source precursors to nanoscale binary, ternary and quaternary metal sulfides. Chem Rev. 2021;121:6057–6123. doi:10.1021/acs.chemrev.0c01183
  • Tedstone AA, Bin Jumah A, Asuquo E, et al. Transition metal chalcogenide bifunctional catalysts for chemical recycling by plastic hydrocracking: a single-source precursor approach. Royal Soc Open Sci. 2022;9:211353. doi:10.1098/rsos.211353
  • Hogarth G, Onwudiwe DC. Copper dithiocarbamates: coordination chemistry and applications in materials science, biosciences and beyond. Inorganics. 2021;9:70. doi:10.3390/inorganics9090070
  • Holechek JL, Geli HM, Sawalhah MN, et al. A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability. 2022;14:4792. doi:10.3390/su14084792
  • Zhang Y, Khan I, Zafar MW. Assessing environmental quality through natural resources, energy resources, and tax revenues. Environ Sci Pollut Res. 2022;29:1–16. doi:10.1007/s11356-022-22005-z
  • Rehman A, Ma H, Ozturk I, et al. Revealing the dynamic effects of fossil fuel energy, nuclear energy, renewable energy, and carbon emissions on Pakistan’s economic growth. Environ Sci Pollut Res. 2022;29:1–11. doi:10.1007/s11356-022-19317-5
  • Ali SA, Ahmad T. Chemical strategies in molybdenum based chalcogenides nanostructures for photocatalysis. Int J Hydrogen Energy. 2022;47:29255–29283. doi:10.1016/j.ijhydene.2022.06.269
  • Gul MM. Ahmad KS nanocomposite Zr2S3-BaS-Cr2S3 ternary-metal chalcogenide: an impressive supercapacitor electrode and environmental remediant of toxic pollutants. Int J Energy Res. 2022. doi:10.1002/er.8489.
  • Dahiya Y, Hariram M, Kumar M, et al. Modified transition metal chalcogenides for high performance supercapacitors: current trends and emerging opportunities. Coord Chem Rev. 2022;451:214265. doi:10.1016/j.ccr.2021.214265
  • Sukhmani SK, Raut SD, Siddiqui T, et al. Self-promoted nickel-chalcogenide nanostructures: a novel electrochemical supercapacitor device-design strategy. Mater Res Bull. 2022;156:111975. doi:10.1016/j.materresbull.2022.111975
  • Ahmad M, Hussain I, Nawaz T, et al. Comparative study of ternary metal chalcogenides (MX; M = Zn–Co–Ni; X = S, Se, Te): formation process, charge storage mechanism and hybrid supercapacitor. J Power Source. 2022;534:231414. doi:10.1016/j.jpowsour.2022.231414
  • Bahaa A, Abdelkareem MA, Mohamed AY, et al. High energy storage quasi-solid-state supercapacitor enabled by metal chalcogenide nanowires and iron-based nitrogen-doped graphene nanostructures. J Colloid Interface Sci. 2022;608:711–719. doi:10.1016/j.jcis.2021.09.136
  • Zhang L, Li X, Yang M, et al. High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Mater. 2021;41:522–545. doi:10.1016/j.ensm.2021.06.033
  • Pérez-Lucas G, El Aatik A, Aliste M, et al. Reclamation of aqueous waste solutions polluted with pharmaceutical and pesticide residues by biological-photocatalytic (solar) coupling in situ for agricultural reuse. Chem Eng J. 2022;448:137616. doi:10.1016/j.cej.2022.137616
  • Kumar N, Verma S, Park J, et al. Evaluation of photocatalytic performances of PEG and PVP capped zinc sulfide nanoparticles towards organic environmental pollutant in presence of sunlight. Chemosphere. 2022;298:134281. doi:10.1016/j.chemosphere.2022.134281
  • Saka A, Jule LT, Soressa S, et al. Biological approach synthesis and characterization of iron sulfide (FeS) thin films from banana peel extract for contamination of environmental remediation. Sci Report. 2022;12:1–8. doi:10.1038/s41598-021-99269-x
  • Iqbal MF, Ashiq MN, Iqbal S, et al. High specific capacitance and energy density of synthesized graphene oxide based hierarchical Al2S3 nanorambutan for supercapacitor applications. Electrochim Acta. 2017;246:1097–1103. doi:10.1016/j.electacta.2017.06.123
  • Baig MM, Gul IH, Khan MZ, et al. Binder-free heterostructured MWCNTs/Al2S3 decorated on NiCo foam as highly reversible cathode material for high-performance supercapacitors. Electrochim Acta. 2020;340:135955. doi:10.1016/j.electacta.2020.135955
  • Patil M, Sharma D, Dive A, et al. Synthesis and characterization of Cu2S thin film deposited by chemical bath deposition method. Proc Manufac. 2018;20:505–508.
  • Deng J, Huang X, Wang M, et al. Facile synthesis of Cu2S nanoplates as anode for potassium ion batteries. Mater Lett. 2020;262:127048. doi:10.1016/j.matlet.2019.127048
  • Yue Y, Zhang P, Wang W, et al. Enhanced dark adsorption and visible-light-driven photocatalytic properties of narrower-band-gap Cu2S decorated Cu2O nanocomposites for efficient removal of organic pollutants. J Hazard Mater. 2020;384:121302. doi:10.1016/j.jhazmat.2019.121302
  • Majid S, Ahmad KS. Analysis of dopant concentration effect on optical and morphological properties of PVD coated Cu-doped Ni3S2 thin films. Optik (Stuttg). 2019;187:152–163. doi:10.1016/j.ijleo.2019.05.025
  • Sharif S, Ahmad KS. Synthesis of palladium diethyldithiocarbamate complexes as precursor for the deposition of un-doped and copper sulfide doped thin films by a facile physical vapour deposition technique. Optik (Stuttg). 2020;218:165014. doi:10.1016/j.ijleo.2020.165014
  • Anwar J, Ahmad KS, Jaffri SB, et al. Doped antimony chalcogenide semiconductor thin films fabrication by physical vapour deposition: elucidation of optoelectronic and electrochemical features. Can Metal Quart. 2022;61:145–154. doi:10.1080/00084433.2022.2034710
  • Habibi MH, Parhizkar J. Cobalt ferrite nano-composite coated on glass by doctor blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations. Spectrochim Acta A Mol Biomol Spectroscop. 2015;150:879–885. doi:10.1016/j.saa.2015.06.040
  • Maryanchuk P, Koziarskyi I. Magnetic, electrical, and optical properties of (HgS)(AlS) MN and (HgS)(InS) MN crystals. Inorg Mater. 2012;48:655–661. doi:10.1134/S0020168512070096
  • Shim Y, Hasegawa K, Wakita K, et al. Optical properties of CuAlS2 with small indium content. Phys Status Solidi C. 2009;6:1089–1092. doi:10.1002/pssc.200881235
  • Kaliyannan G V, Palanisamy SV, Rathanasamy R, et al. An extended approach on power conversion efficiency enhancement through deposition of ZnS-Al2S3 blends on silicon solar cells. J Electron Mater. 2020;49:5937–5946. doi:10.1007/s11664-020-08361-x
  • Liu ML, Chen IW, Huang FQ, et al. Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4. Adv Mater. 2009;21:3808–3812. doi:10.1002/adma.200900409
  • Molla A, Sahu M, Hussain S. Synthesis of tunable band gap semiconductor nickel sulphide nanoparticles: rapid and round the clock degradation of organic dyes. Sci Report. 2016;6:1–11. doi:10.1038/srep26034
  • Torki F, Faghihian H. Photocatalytic activity of NiS, NiO and coupled NiS–NiO for degradation of pharmaceutical pollutant cephalexin under visible light. RSC Adv. 2017;7:54651–54661. doi:10.1039/C7RA09461B
  • Yu C, Mao D, Xia F, et al. Formation of SnS2/Ni2S3 heterojunction on three-dimensional nickel framework for treating chromium (VI)-containing wastewater. Mater Res Exp. 2017;4:115023. doi:10.1088/2053-1591/aa9862
  • Bhardwaj R, Jha R, Bhushan M. Comparative study of electrocatalytic activity of single phase rhombohedral β-NiS nanoparticles in alkaline electrolytes. Mater Sci Semicond Process. 2021;130:105827. doi:10.1016/j.mssp.2021.105827
  • Mousavi-Kamazani M, Salavati-Niasari M, Sadeghinia M. Synthesis and characterization of Cu2S nanostructures via cyclic microwave radiation. Superlattice Microstruct. 2013;63:248–257. doi:10.1016/j.spmi.2013.08.023
  • Gahtar A, Benramache S, Zaouche C, et al. Effect of temperature on the properties of nickel sulfide films performed by spray pyrolysis technique. Adv Mater Sci. 2020;20:36–51. doi:10.2478/adms-2020-0015
  • Kumar N, Mittal H, Parashar V, et al. Efficient removal of rhodamine 6G dye from aqueous solution using nickel sulphide incorporated polyacrylamide grafted gum karaya bionanocomposite hydrogel. RSC Adv. 2016;6:21929–21939. doi:10.1039/C5RA24299A
  • Ghogare TT, Lokhande VC, Ji T, et al. A graphene oxide/samarium sulfide (GO/Sm2S3) composite thin film: preparation and electrochemical study. Surf Inter. 2020;19:100507.
  • Chen L, Hosseini M, Fakhri A, et al. Synthesis and characterization of Cr2S3–Bi2O3 nanocomposites: photocatalytic, quenching, repeatability, and antibacterial performances. J Mater Sci Mater Electron. 2019;30:13067–13075. doi:10.1007/s10854-019-01668-4
  • Karthikeyan C, Dhilip Kumar R, Anandha Raj J, et al. One pot and large-scale synthesis of nanostructured metal sulfides: synergistic effect on supercapacitor performance. Energy Environ. 2020;31:1367–1384. doi:10.1177/0958305X19899373
  • Balayeva OO, Azizov AA, Muradov MB, et al. β-NiS and Ni3S4 nanostructures: fabrication and characterization. Mater Res Bull. 2016;75:155–161. doi:10.1016/j.materresbull.2015.11.037
  • Akin I, Aslan E, Hatay Patir I. Enhanced hydrogen evolution catalysis at the liquid/liquid interface by NixSy and NixSy/carbon nanotube catalysts. Eur J Inorg Chem. 2017;2017:3961–3966. doi:10.1002/ejic.201700873
  • Vafapoor B, Fathi D, Eskandari M. Zns/Al2S3 layer as a blocking layer in quantum dot sensitized solar cells. J Electron Mater. 2018;47:1932–1936. doi:10.1007/s11664-017-5993-8
  • Kassim ANUAR, Min HS, Siang LK, et al. SEM, EDAX and UV-visible studies on the properties of Cu2S thin films. Chalcogenide Lett. 2011;8:405–410.
  • Lian C, Liu K, Liu H, et al. Impurity effects on charging mechanism and energy storage of nanoporous supercapacitors. J Phys Chem C. 2017;121:14066–14072. doi:10.1021/acs.jpcc.7b04869
  • Jiang Q, Kurra N, Alhabeb M, et al. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv Energy Mater. 2018;8:1703043. doi:10.1002/aenm.201703043
  • Gul MM, Ahmad KS. Bioelectrochemical systems: sustainable bio-energy powerhouses. Biosensor Bioelectron. 2019;142:111576. doi:10.1016/j.bios.2019.111576
  • Nandhini S, Muralidharan G. Surfactant free nickel sulphide nanoparticles for high capacitance supercapacitors. In AIP Conference Proceedings (Vol. 1942, No. 1, p. 140060); 2018 Apr. AIP Publishing LLC.
  • Li X, Shen J, Li N, et al. Template-free solvothermal synthesis of NiS2 microspheres on graphene sheets for high-performance supercapacitors. Mater Lett. 2015;139:81–85. doi:10.1016/j.matlet.2014.10.024
  • Yang J, Duan X, Qin Q, et al. Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors. J Mater Chem A. 2013;1:7880–7884. doi:10.1039/c3ta11167a
  • Raj CJ, Kim BC, Cho WJ, et al. Electrochemical capacitor behavior of copper sulfide (CuS) nanoplatelets. J Alloy Comp. 2014;586:191–196. doi:10.1016/j.jallcom.2013.10.056

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.