945
Views
42
CrossRef citations to date
0
Altmetric
Original Articles

High-transmittance liquid-crystal displays using graphene conducting layers

, , , &
Pages 101-105 | Received 29 Jul 2013, Accepted 20 Aug 2013, Published online: 19 Sep 2013

References

  • Kim KH, Song JK. Technical evolution of liquid crystal displays. Npg Asia Mater. 2009;1:29–36.
  • Schadt M, Helfrich W. Voltage-dependent optical activity of a twisted nematic liquid crystal. Appl Phys Lett. 1971;18:127–128.
  • Ma J, Ye X, Jin B. Structure and application of polarizer film for thin-film-transistor liquid crystal displays. Displays. 2011;32:49–57.
  • Jazi AY, Yoon S, Liu JJ. Automatic grading of TFT-LCD glass substrates using optimized support vector machines. Ind Eng Chem Res. 2012;51:10887–10894.
  • Hong Q, Wu TX, Zhu XY, Lu RB, Wu ST. Extraordinarily high-contrast and wide-view liquid-crystal displays. Appl Phys Lett. 2005;86:121107–1–3.
  • Lyu JJ, Sohn J, Kim HY, Lee SH. Recent trends on patterned vertical alignment (PVA) and fringe-field switching (FFS) liquid crystal displays for liquid crystal television applications. J Disp Technol. 2007;3:404–412.
  • Lee SH, Lee SL, Kim HY. Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching. Appl Phys Lett. 1998;73:2881–2883.
  • Kim KH, Jeon EY, Park BW, Song DH, Lee JH, Lee GS, Shin KC, Kim HS, Yoon TH. Pixel electrode structure for high transmittance in a multi-domain vertical alignment liquid crystal display device. J Phys D Appl Phys. 2012;45:065103–1–5.
  • Sawada M, Higuchi M, Kondo S, Saka H. Characteristics of indium-tin-oxide/silver/indium-tin-oxide sandwich films and their application to simple-matrix liquid-crystal displays. Jpn J Appl Phys. 2001;40:3332–3336.
  • Jeong HS, Jeon HJ, Kim YH, Oh MB, Kumar P, Kang SW, Jung HT. Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications. Npg Asia Mater. 2012;4:e7-1–7.
  • Na SI, Kim SS, Jo J, Kim DY. Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv Mater. 2008;20:4061–4067.
  • Choi YY, Kang SJ, Kim HK, Choi WM, Na SI. Multilayer graphene films as transparent electrodes for organic photovoltaic devices. Sol Energ Mat Sol C. 2012;96:281–285.
  • Kumar A, Zhou CW. The race to replace tin-doped indium oxide: which material will win? ACS Nano. 2010;4:11–14.
  • Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS. Graphene-based liquid crystal device. Nano Lett. 2008;8:1704–1708.
  • Han TH, Lee Y, Choi MR, Woo SH, Bae SH, Hong BH, Ahn JH, Lee TW. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics. 2012;6:105–110.
  • Bae S, Kim H, Lee Y, Xu XF, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol. 2010;5:574–578.
  • Chen JH, Jang C, Xiao SD, Ishigami M, Fuhrer MS. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol. 2008;3:206–209.
  • Schniepp HC, Kudin KN, Li JL, Prud’homme RK, Car R, Saville DA, Aksay IA. Bending properties of single functionalized graphene sheets probed by atomic force microscopy. ACS Nano. 2008;2:2577–2584.
  • Jung YU, Na SI, Kim HK, Kang SJ. Organic photovoltaic devices with low resistance multilayer graphene transparent electrodes. J Vac Sci Technol A. 2012;30:050604–1–5.
  • Li XS, Cai WW, An JH, Kim S, Nah J, Yang DX, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324:1312–1314.
  • Edwards RS, Coleman KS. Graphene film growth on polycrystalline metals. Accounts Chem Res. 2013;46:23–30.
  • Nordendorf G, Kasdorf O, Kitzerow HS, Liang YY, Feng XL, Mullen K. Liquid crystal addressing by graphene electrodes made from graphene oxide. Jpn J Appl Phys. 2010;49:100206–1–3.
  • Jang WS, Chae SS, Lee SJ, Song KM, Baik HK. Improved electrical conductivity of a non-covalently dispersed graphene-carbon nanotube film by chemical p-type doping. Carbon. 2012;50:943–951.
  • Li XS, Zhu YW, Cai WW, Borysiak M, Han BY, Chen D, Piner RD, Colombo L, Ruoff RS. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009;9:4359–4363.
  • Park KW, Kang SB, Jeong JA, Choi SW, Kim J, You IK, Yang YS, Kim HK. Liquid crystal devices incorporating transparent Zn, Sn co-doped In2O3 electrodes prepared by direct inkjet-printing of nanosized particles. J Phys D Appl Phys. 2013;46:145301–1–6.
  • Nie X, Lu R, Wu XH, Wu S-T TX. Anchoring energy and cell gap effects on liquid crystal response time. J Appl Phys. 2007;101:103110–1–5.
  • Nie X, Xianyu H, Lu R, Wu TX, Wu S-T. Pretilt angle effects on liquid crystal response time. J Disp Technol. 2007;3:280–283.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.