306
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: reduced losses through Forster transfer 

, , , , , , , & show all
Pages 145-152 | Received 07 Apr 2013, Accepted 12 Sep 2013, Published online: 07 Oct 2013

References

  • Date M, Takeuchi Y, Kato K. A memory-type holographic polymer dispersed liquid crystal (HPDLC) reflective display device. J Phys D: Appl Phys. 1998;31:2225–2230.
  • Hsiao VKS, Chang W-T. Optically switchable, polarization-independent holographic polymer dispersed liquid crystal (H-PDLC) gratings. Appl Phys B. 2010;100:539–546.
  • Simoni F, Cipparrone G, Mazzulla A, Pagliusi P. Polymer dispersed liquid crystals: effects of photorefractivity and local heating on holographic recording. Chem Phys. 1999;245:429–436.
  • Sio LD, Tabiryan N, Caputo R, Veltri A, Umeton C. POLICRYPS structures as switchable optical phase modulators. Opt Express. 2008;16:7619–7624.
  • Li MS, Wu ST, Fuh AY-G. Superprism phenomenon based on holographic polymer dispersed liquid crystal films. Appl Phys Lett. 2006;88:091109.
  • Lucchetta DE, Criante L, Francescangeli O, Simoni F. Light amplification by dye-doped holographic polymer dispersed liquid crystals. Appl Phys Lett. 2004;84:4893–4895.
  • Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett. 1987;58:2059–2062.
  • Jakubiak R, Bunning TJ, Vaia RA, Natarajan LV, Tondiglia PV. Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials. Adv Mater. 2003;15:241–244.
  • Jakubiak R, Natarajan LV, Tondiglia V, He GS, Prasad PN, Bunning TJ, Vaia RA. Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals. Appl Phys Lett. 2004;85:6095–6097.
  • Hsiao VKS, Lu C, He GS, Pan M, Cartwright AN, Prasad PN. High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures. Opt Express. 2005;13:3787–3794.
  • Liu YJ, Sun XW, Elim HI, Ji W. Effect of liquid crystal concentration on the lasing properties of dye-doped holographic polymer-dispersed liquid crystal transmission gratings. Appl Phys Lett. 2007;90:011109.
  • Deng S, Huang W, Liu Y, Diao Z, Peng Z, Yao L, Xuan L. Wavelength tunable properties for distributed feedback lasing from dye-doped holographic polymer dispersed liquid crystal transmission grating. Acta Phys Sin. 2012;61:126101.
  • Huang W, Diao Z, Yao L, Cao Z, Liu Y, Ma J, Xuan L. Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating. Appl Phys Express. 2013;6:022702.
  • Lucchetta DE, Criante L, Francescangeli O, Simoni F. Wavelength flipping in laser emission driven by a switchable holographic grating. Appl Phys Lett. 2004;84:837–839.
  • Ye C, Shi L, Wang J, Lo D, Zhu X-G. Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers. Appl Phys Lett. 2003;83:4101–4103.
  • Jakubiak R, Tondiglia VP, Natarajan LV, Sutherland RL, Lloyd P, Bunning TJ, Vaia RA. Dynamic lasing from all-organic two-dimensional photonic crystals. Adv Mater. 2005;17:2807–2811.
  • Jakubiak R, Brown DP, Natarajan LV, Tondiglia V, Lloyd P, Sutherland RL, Bunning TJ, Vaia RA. Influence of morphology on the lasing behavior of pyrromethene 597 in a holographic polymer dispersed liquid crystal reflection grating. Proc SPIE. 2006;6322:63220A.
  • Förster T. 10th Spiers memorial lecture transfer mechanisms of electronic excitation. Discuss Faraday Soc. 1959;27:7–17.
  • May B, Poteau X, Yuan D, Brown RG. A study of a highly efficient resonance energy transfer between 7-N,N-diethylamino-4-me thylcoumarin and 9-butyl-4-butylamino-1,8-na phthalimide. Dyes Pigments. 1999;42:79–84.
  • Gupta R, Stevenson M, Dogariu A, McGehee MD, Park JY, Srdanov V, Heeger AJ. Low-threshold amplified spontaneous emission in blends of conjugated polymers. Appl Phys Lett. 1998;73:3492–3494.
  • Berggren M, Dodabalapur A, Slusher RE. Stimulated emission and lasing in dye-doped organic thin films with Forster transfer. Appl Phys Lett. 1997;71:2230–2232.
  • Kozlov VG, Bulovic V, Burrows PE, Baldo M, Khalfin VB, Parthasarathy G, Forrest SR. Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films. J Appl Phys. 1998;84:4096–4107.
  • Berggren M, Dodabalapur A, Slusher RE, Bao Z. Light amplification in organic thin films using cascade energy transfer. Nature. 1997;389:466–469.
  • Gupta R, Stevenson M, Heeger AJ. Low threshold distributed feedback lasers fabricated from blends of conjugated polymers: reduced losses through Förster transfer. J Appl Phys. 2002;92:4874–4877.
  • Huang W, Liu Y, Diao Z, Yang C, Yao L, Ma J, Xuan L. Theory and characteristics of holographic polymer dispersed liquid crystal transmission grating with scaffolding morphology. Appl Opt. 2012;51:4013–4020.
  • Abbate G, Vita F, Marino A, Tkachenko V, Slussarenko S, Sakhno O, Stumpe J. New generation of holographic gratings based on polymer-LC composites: POLICRYPS and POLIPHEM. Mol Cryst Liq Cryst. 2006;453:1–13.
  • Kretsch KP, Belton C, Lipson S, Blau WJ, Henari FZ. Amplified spontaneous emission and optical gain spectra from stilbenoid and phenylene vinylene derivative model compounds. J Appl Phys. 1999;86:6155–6159.
  • Förster T. Modern quantum chemistry: action of light and organic molecules. New York (NY): Academic Press; 1965.
  • Pope M, Swenberg CE. Electronic processes in organic crystals. New York (NY): Oxford University Press; 1982.
  • McGehee MD, Gupta R, Veenstra S, Miller EK, Dıaz-Garcıa M, Heeger AJ. Amplified spontaneous emission from photopumped films of a conjugated polymer. Phys Rev B. 1998;58:7035–7039.
  • Tsutsumi N, Kawahira T, Sakai W. Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices. Appl Phys Lett. 2003;83:2533–2535.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.