234
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal

, , , , , & show all
Pages 239-246 | Received 30 Aug 2013, Accepted 30 Sep 2013, Published online: 23 Oct 2013

References

  • Duarte FJ. Tunable laser applications. 2nd ed. New York (NY): CRC Press; 2009.
  • Dragoman D, Dragoman M. Advanced optoelectronic devices. New York (NY): Springer; 1998.
  • Coles H, Morris S. Liquid-crystal lasers. Nat Photon. 2010;4:676–685.
  • Clark J, Lanzani G. Organic photonics for communications. Nat Photon. 2010;4:438–446.
  • Orignac X, Barbier D, Du XM, Almeida RM. Fabrication and characterization of sol-gel planar waveguides doped with rare-earth ions. Appl Phys Lett. 1996;69:895–897.
  • Ozaki M, Kasano M, Kitasho T, Ganzke D, Haase W, Yoshino K. Electro-tunable liquid-crystal laser. Adv Mater. 2003;15:974–977.
  • Ozaki R, Shinpo T, Yoshino K, Ozaki M, Moritake H. Tunable liquid crystal laser using distributed feedback cavity fabricated by nanoimprint lithography. Appl Phys Express. 2008;1:012003.
  • Ozaki R, Matsuhisa Y, Ozaki M, Yoshino K. Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer. Appl Phys Lett. 2004;84:1844–1846.
  • Maune B, Loncar M, Witzens J, Hochberg M, Baehr-Jones T, Psaltis D, Scherer A, Qiu YM. Liquid-crystal electric tuning of a photonic crystal laser. Appl Phys Lett. 2004;85:360–362.
  • Yu HP, Tang BY, Li JH, Li L. Electrically tunable lasers made from electro-optically active photonics band gap materials. Opt Express. 2005;13:7243–7249.
  • Matsui T, Ozaki M, Yoshino K. Electro-tunable laser action in a dye-doped nematic liquid crystal waveguide under holographic excitation. Appl Phys Lett. 2003;83:422–424.
  • Yang DK, Wu ST. Fundamentals of liquid crystal devices. New York (NY): John Wiley & Sons Inc; 2006.
  • Sutherland RL, Natarajan LV, Tondiglia VP, Bunning TJ, Adams WW. Electrically switchable volume gratings in polymer-dispersed liquid crystals. Appl Phys Lett. 1994;64:1074–1076.
  • Bunning TJ, Natarajan LV, Tondiglia VP, Sutherland RL. Holographic polymer-dispersed liquid crystals (H-PDLCs). Annu Rev Mater Sci. 2000;30:83–115.
  • White TJ, Natarajan LV, Tondiglia VP, Bunning TJ, Guymon CA. Polymerization kinetics and monomer functionality effects in thiolene polymer dispersed liquid crystals. Macromolecules. 2007;40:1112–1120.
  • De Sio L, Caputo R, De Luca A, Veltri A, Umeton C, Sukhov AV. In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure. Appl Opt. 2006;45:3721–3727.
  • Caputo R, De Sio L, Veltri A, Umeton C, Sukhov AV. Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material. Opt Lett. 2004;29:1261–1263.
  • Liu YJ, Su YC, Hsu YJ, Hsiao VK. Light-induced spectral shifting generated from azo-dye doped holographic 2D gratings. J Mater Chem. 2012;22:14191–14195.
  • Zheng Z, Song J, Liu Y, Guo F, Ma J, Xuan L. Single-step exposure for two-dimensional electrically-tunable diffraction grating based on polymer dispersed liquid crystal. Liq Cryst. 2008;35:489–499.
  • Zheng Z, Ma J, Liu Y, Xuan L. Molecular dynamics of the interfacial properties of partially fluorinated polymer dispersed liquid crystal gratings. J Phys D Appl Phys. 2008;41:235302.
  • Huang W, Deng S, Li W, Peng Z, Liu Y, Hu L, Xuan L. A polarization-independent and low scattering transmission grating for a distributed feedback cavity based on holographic polymer dispersed liquid crystal. J Opt. 2011;13:085501.
  • Huang W, Diao Z, Liu Y, Peng Z, Yang C, Ma J, Xuan L. Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique. Org Electron. 2012;13:2307–2311.
  • Huang W, Liu Y, Diao Z, Yang C, Yao L, Ma J, Xuan L. Theory and characteristics of holographic polymer dispersed liquid crystal transmission grating with scaffolding morphology. Appl Opt. 2012;51:4013–4020.
  • Diao Z, Deng S, Huang W, Xuan L, Hu L, Liu Y, Ma J. Organic dual-wavelength distributed feedback laser empowered by dye-doped holography. J Mater Chem. 2012;22:23331–23334.
  • Liu YJ, Sun XW, Shum P, Li HP, Mi J, Ji W, Zhang XH. Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings. Appl Phys Lett. 2006;88:061107.
  • Hsiao VKS, Lu CG, He GS, Pan M, Cartwright AN, Prasad PN, Jakubiak R, Vaia RA, Bunning TJ. High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures. Opt Express. 2005;13:3787–3794.
  • Luo D, Sun XW, Dai HT, Demir HV, Yang HZ, Ji W. Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals. J Appl Phys. 2010;108:013106.
  • Tong HP, Li YR, Lin JD, Lee CR. All-optically controllable distributed feedback laser in a dye-doped holographic polymer-dispersed liquid crystal grating with a photoisomerizable dye. Opt Express. 2010;18:2613–2620.
  • Jakubiak R, Bunning TJ, Vaia RA, Natarajan LV, Tondiglia VP. Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials. Adv Mater. 2003;15:241–244.
  • Jakubiak R, Tondiglia VP, Natarajan LV, Sutherland RL, Lloyd P, Bunning TJ, Vaia RA. Dynamic lasing from all-organic two-dimensional photonic crystals. Adv Mater. 2005;17:2807–2811.
  • Jakubiak R, Natarajan LV, Tondiglia V, He GS, Prasad PN, Bunning TJ, Vaia RA. Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals. Appl Phys Lett. 2004;85:6095–6097.
  • Huang W, Diao Z, Yao L, Cao Z, Liu Y, Ma J, Xuan L. Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating. Appl Phys Express. 2013;6:022702.
  • Asquini R, Fratalocchi A, d’Alessandro A, Assanto G. Electro-optic routing in a nematic liquid-crystal waveguide. Appl Opt. 2005;44:4136–4143.
  • Abbate G, De Stefano L, Santamato E. Transverse-magnetic nonlinear modes in a nematic liquid-crystal slab waveguide. J Opt Soc Am B. 1996;13:1536–1541.
  • Lin TS, Lue JT. Mode splitting in an optical slab waveguide filled with nematic liquid crystals. Appl Phys B-Lasers O. 2003;76:561–567.
  • Vardanyan KK, Qi J, Eakin JN, De Sarkar M, Crawford GP. Polymer scaffolding model for holographic polymer-dispersed liquid crystals. Appl Phys Lett. 2002;81:4736–4738.
  • Butler JJ, Malcuit MS, Rodriguez MA. Diffractive properties of highly birefringent volume gratings: investigation. J Opt Soc Am B. 2002;19:183–189.
  • Yamamoto S, Koyamada Y, Makimoto T. Normal-mode analysis of anisotropic and gyrotropic thin-film waveguides for integrated optics. J Appl Phys. 1972;43:5090–5097.
  • Okamoto K. Fundamentals of optical waveguides. 2nd ed. San Diego (CA): Academic Press; 2010.
  • Kogelnik H, Shank CV. Stimulated emission in a periodic structure. Appl Phys Lett. 1971;18:152–154.
  • Chen KH, Chang WY, Chen JH. Measurement of the pretilt angle and the cell gap of nematic liquid crystal cells by heterodyne interferometry. Opt Express. 2009;17:14143–14149.
  • Amosova LP, Vasil’ev VN, Ivanova NL, Konshina EA. Ways of increasing the response rate of electrically controlled optical devices based on nematic liquid crystals. J Opt Technol. 2010;77:79–87.
  • Matsui T, Ozaki M, Yoshino K. Tunable laser action in a dye-doped nematic liquid-crystal waveguide under holographic excitation based on electric-field-induced TM guided-mode modulation. J Opt Soc Am B. 2004;21:1651–1658.
  • Tsutsumi N, Nishida H. Tunable distributed feedback lasing with low threshold and high slope efficiency from electroluminescent conjugated polymer waveguide. Opt Commun. 2011;284:3365–3368.
  • Peng Z, Liu Y, Cao Z, Mu Q, Yao L, Hu L, Yang C, Wu R, Xuan L. Fast response property of low-viscosity difluorooxymethylene-bridged liquid crystals. Liq Cryst. 2013;40:91–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.