1,940
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of new wide nematic diaryl-diacetylenes containing thiophene-based heteromonocyclic and heterobicyclic structures, and their birefringence properties

, , , , , & show all
Pages 642-651 | Received 05 Aug 2013, Accepted 05 Dec 2013, Published online: 14 Jan 2014

References

  • Contoret AEA, Farrar SR, O’Neill M, Nicholls JE, Richards GJ, Kelly SM, Hall AW. The photopolymerization and cross-linking of electroluminescent liquid crystals containing methacrylate and diene photopolymerizable end groups for multilayer organic light-emitting diodes. Chem Mater. 2002;14:1477–1487. doi:10.1021/cm011111f
  • Woon KL, Aldred MP, Vlachos P, Mehl GH, Stirner T, Kelly SM, O’Neill M. Electronic charge transport in extended nematic liquid crystals. Chem Mater. 2006;18:2311–2317. doi:10.1021/cm0601335
  • Radhakrishnan S, Somanathan N, Narasimhaswamy T. Structure–property studies and orientation effects of polythiophenes containing mesogenic side chains. J Polym Sci B: Polym Phys. 2008;46:1463–1477. doi:10.1002/polb.21482
  • Han J, Wang Q, Chang XY, Zhu LR. Fluorescent liquid crystalline compounds with 1,3,4-oxadiazole and benzo[b]thiophene units. Liq Cryst. 2012;39:669–674. doi:10.1080/02678292.2012.671966
  • Aldred MP, Carrasco-Orozco M, Contoret AEA, Dong D, Farrar SR, Kelly SM, Kitney SP, Mathieson D, O’Neill M, Tsoi WC, Vlachos P. Organic electroluminescence using polymer networks from smectic liquid crystals. Liq Cryst. 2006;33:459–467. doi:10.1080/02678290500487073
  • Asai K, Konishi G, Nakajima Y, Kawauchi S, Ozawa F, Mizuno K. Enhanced absorption and fluorescence efficiency of silylethynyl-functionalized oligothiophenes and thieno[3,2–b]thiopahene. J Organomet Chem. 2011;696:1266–1271. doi:10.1016/j.jorganchem.2010.10.044
  • Li F, Chen W, Chen Y. Mesogen induced self-assembly for hybrid bulk heterojunction solar cells based on a liquid crystal D–A copolymer and ZnO nanocrystals. J Mater Chem. 2012;22:6259–6266. doi:10.1039/c2jm16853g
  • Lincker F, Heinrich B, Bettignies RD, Rannou P, Pécaut J, Grévin B, Pron A, Donnio B, Demadrille R. Fluorenone core donor–acceptor–donor π-conjugated molecules end-capped with dendritic oligo(thiophene)s: synthesis, liquid crystalline behaviour, and photovoltaic applications. J Mater Chem. 2011;21:5238–5247. doi:10.1039/c0jm02437f
  • Yao K, Chen L, Chen Y, Li F, Ren X, Wang H, Li Y. Tuning the photovoltaic parameters of thiophene-linked donor–acceptor liquid crystalline copolymers for organic photovoltaics. Polym Chem. 2012;3:710–717. doi:10.1039/c2py00523a
  • Li X, Chen L, Chen Y, Li F, Yao K. Photocrosslinkable liquid-crystalline polythiophenes with oriented nanostructure and stabilization for photovoltaics. Org Electron. 2012;13:104–113. doi:10.1016/j.orgel.2011.10.012
  • Oikawa K, Monobe H, Nakayama K, Kimoto T, Tsuchiya K, Heinrich B, Guillon D, Shimizu Y, Yokoyama M. High carrier mobility of organic field-effect transistors with a thiophene–naphthalene mesomorphic semiconductor. Adv Mater. 2007;19:1864–1868. doi:10.1002/adma.200602608
  • Funahashi M, Hanna J. High carrier mobility up to 0.1 cm2 V-1 s-1 at ambient temperatures in thiophene-based smectic liquid crystals. Adv Mater. 2005;17:594–598. doi:10.1002/adma.200401274
  • Garnier F, Hajlaoui R, El Kassmi A, Horowitz G, Laigre L, Porzio W, Armanini M, Provasoli F. Dihexylquaterthiophene, a two-dimensional liquid crystal-like organic semiconductor with high transport properties. Chem Mater. 1998;10:3334–3339. doi:10.1021/cm970704g
  • He B, Tian H, Yan D, Geng Y, Wang F. Novel liquid crystalline conjugated oligomers based on phenanthrene for organic thin film transistors. J Mater Chem. 2011;21:14793–14799. doi:10.1039/c1jm13086b
  • Janssen PGA, Pouderoijen MA, van Breemen AJJM, Herwig PT, Koeckelberghs G, Popa-Merticaru AR, Meskers SCJ, Valeton JJP, Meijer EW, Schenning APHJ. Synthesis and properties of α,ω-phenyl-capped bithiophene derivatives. J Mater Chem. 2006;16:4335–4342. doi:10.1039/b608441a
  • Lim E, Jung BJ, Lee J, Shim HK, Lee JI, Yang YS, Do LM. Thin-film morphologies and solution-processable field-effect transistor behavior of a fluorene−thieno[3,2-b]thiophene-based conjugated copolymer. Macromolecules. 2005;38:4531–4535. doi:10.1021/ma048128e
  • Mcculloch I, Heeney M, Bailey C, Genevicius K, Macdonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W, Chabinyc ML, Kline R, Mcgehee MD, Toney MF. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater. 2006;5:328–333. doi:10.1038/nmat1612
  • Funahashi M. Development of liquid-crystalline semiconductors with high carrier mobilities and their application to thin-film transistors. Polym J. 2009;41:459–469. doi:10.1295/polymj.PJ2008324
  • Liu P, Wu Y, Pan H, Li Y, Gardner S, Ong BS, Zhu S. Novel high-performance liquid-crystalline organic semiconductors for thin-film transistors. Chem Mater. 2009;21:2727–2732. doi:10.1021/cm900265q
  • Nuita M, Sakuda J, Hirai Y, Funahashi M, Kato T. Hole transport of a liquid-crystalline phenylterthiophene derivative exhibiting the nematic phase at ambient temperature. Chem Lett. 2011;40:412–413. doi:10.1246/cl.2011.412
  • Matsui A, Funahashi M, Tsuji T, Kato T. High hole mobility for a side-chain liquid-crystalline smectic polysiloxane exhibiting a nanosegregated structure with a terthiophene moiety. Chem Eur J. 2010;16:13465–13472. doi:10.1002/chem.200902440
  • Yasuda T, Shimizu T, Liu F, Ungar G, Kato T. Electro-functional octupolar π-conjugated columnar liquid crystals. J Am Chem Soc. 2011;133:13437–13444. doi:10.1021/ja2035255
  • Miyajima D, Araoka F, Takezoe H, Kim J, Kato K, Takata M, Aida T. Electric-field-responsive handle for large-area orientation of discotic liquid-crystalline molecules in millimeter-thick films. Angew Chem Int Ed. 2011;50:7865–7869. doi:10.1002/anie.201102472
  • Watanabe K, Osaka I, Yorozuya S, Akagi K. Helically π-stacked thiophene-based copolymers with circularly polarized fluorescence: high dissymmetry factors enhanced by self-ordering in chiral nematic liquid crystal phase. Chem Mater. 2012;24:1011–1024. doi:10.1021/cm2028788
  • Yamao T, Yamamoto K, Taniguchi Y, Miki T, Hotta S. Laser oscillation in a highly anisotropic organic crystal with a refractive index of 4.0. J Appl Phys. 2008;103:093115. doi:10.1063/1.2919710
  • Fukuzaki N, Higashihara T, Ando S, Ueda M. Synthesis and characterization of highly refractive polyimides derived from thiophene-containing aromatic diamines and aromatic dianhydrides. Macromolecules. 2010;43:1836–1843. doi:10.1021/ma902013y
  • Asai K, Konishi G, Sumi K, Mizuno K. Synthesis of silyl-functionalized oligothiophene-based polymers with bright blue light-emission and high refractive index. J Organomet Chem. 2011;696:1236–1243. doi:10.1016/j.jorganchem.2010.11.013
  • Nakagawa Y, Suzuki Y, Higashihara T, Ando S, Ueda M. Synthesis of highly refractive poly(phenylene thioether)s containing a binaphthyl or diphenylfluorene unit. Polym Chem. 2012;3:2531–2536. doi:10.1039/c2py20325a
  • An YC, Konishi G. Facile synthesis of high refractive index thiophene-containing polystyrenes. J Appl Polym Sci. 2012;124:789–795. doi:10.1002/app.35077
  • Seed AJ, Toyne KJ, Goodby JW. Synthesis of some 2,4- and 2,5-disubstituted thiophene systems and the effect of the pattern of substitution on the refractive indices, optical anisotropies, polarisabilities and order parameters in comparison with those of the parent biphenyl and dithienyl systems. J Mater Chem. 1995;5:653–661
  • Campbell NL, Duffy WL, Thomas GI, Wild JH, Kelly SM, Bartle K, O’Neill M, Minter V, Tuffin RP. Nematic 2,5-disubstituted thiophenes. J Mater Chem. 2002;12:2706–2721. doi:10.1039/b202073b
  • Brettle R, Dunmur DA, Marson CM, Piñol M, Toriyama K. New liquid-crystalline compounds based on thiophene. Chem Lett. 1992;21:613–616. doi:10.1246/cl.1992.613
  • Brettle R, Dunmur DA, Marson CM, Piñol M, Toriyama K. New liquid crystalline compounds based on 2-arylthiophenes and 2-(biphenyl-4-yl)thiophenes. Liq Cryst. 1993;13:515–529. doi:10.1080/02678299308026324
  • Kuiper S, Jager WF, Dingemans TJ, Picken SJ. Liquid crystalline properties of all symmetric p-phenylene and 2,5-thiophene pentamers. Liq Cryst. 2009;36:389–396. doi:10.1080/02678290902923410
  • Matharu AS, Grover C, Komitov L, Andersson G. Ferro-, ferri- and antiferro-electric behaviour in a bent-shaped mesogen. J Mater Chem. 2000;10:1303–1310. doi:10.1039/b000128g
  • Geese K, Prehm M, Tschierske C. Bent-core mesogens with thiophene units. J Mater Chem. 2010;20:9658–9665. doi:10.1039/c0jm01919d
  • Mcdonald R, Lacey D, Watson P, Cowling S, Wilson P. Synthesis and evaluation of some novel chiral heterocyclic liquid crystalline materials exhibiting ferro‐ and antiferro‐electric phases. Liq Cryst. 2005;32:319–330. doi:10.1080/02678290500033711
  • Cernovska K, Kosata B, Svoboda J, Novotna V, Glogarova M. Novel ferroelectric liquid crystals based on fused thieno[3,2-b]furan and thieno[3,2-b]thiophene cores. Liq Cryst. 2006;33:987–996. doi:10.1080/02678290600905404
  • Pintre IC, Serrano JL, Ros MB, Ortega J, Alonso I, Martínez-Perdiguero J, Folcia CL, Etxebarria J, Goc F, Amabilino DB, Puigmartí-Luis J, Gomar-Nadal E. TTF-based bent-core liquid crystals. Chem Commun. 2008;22:2523–2525. doi:10.1039/b801196f
  • Kozmík V, Polášek P, Seidler A, Kohout M, Svoboda J, Novotná V, Glogarová M, Pociecha D. The effect of a thiophene ring in the outer position on mesomorphic properties of the bent-shaped liquid crystals. J Mater Chem. 2010;20:7430–7435. doi:10.1039/c0jm00375a
  • Sekine C, Konya N, Minai M,. Fujisawa K. Synthesis and properties of high birefringence liquid crystals: thiophenylacetylene and benzothiazolylacetylene derivatives. Liq Cryst. 2001;28:1361–1367. doi:10.1080/02678290110061386
  • Zhang Z, Zhang L, Guan X, Shen Z, Chen X, Xing G, Fan X, Zhou Q. Synthesis and properties of highly birefringent liquid crystalline materials: 2,5-bis(5-alkyl-2-butadinylthiophene-yl) styrene monomers. Liq Cryst. 2009;37:69–76. doi:10.1080/02678290903370272
  • Seed AJ, Toyne KJ, Goodby JW, Hird M. Synthesis, transition temperatures, and optical properties of various 2,6-disubstituted naphthalenes and related 1-benzothiophenes with butylsulfanyl and cyano or isothiocyanato terminal groups. J Mater Chem. 2000;10:2069–2080. doi:10.1039/b003818k
  • Seed AJ, Cross GJ, Toyne KJ, Goodby JW. Novel, highly polarizable thiophene derivatives for use in nonlinear optical applications. Liq Cryst. 2003;30:1089–1107. doi:10.1080/0267829031000154363
  • Seed AJ, Toyne KJ, Hird M, Goodby JW. Synthesis and mesomorphic behaviour of high polarisability materials for non-linear optical applications. Liq Cryst. 2012;39:403–414. doi:10.1080/02678292.2012.658090
  • Grant B. Diacetylenic liquid crystals: synthesis and preliminary characterization of 4,4′-dialkyl and 4,4′-dialkoxy derivatives of diphenyldiacetylene. Mol Cryst Liq Cryst. 1978;48:175–182. doi:10.1080/00268947808083757
  • Wu ST, Meng HB, Dalton LR. Diphenyl-diacetylene liquid crystals for electro-optic application. J Appl Phys. 1991;70:3013–3017. doi:10.1063/1.349331
  • Hudson CM, Shenoy RA, Neubert ME Petschek RG. Synthesis and mesomorphic properties of some asymmetrical pyrimidinylphenyldiacetylenes. Liq Cryst. 1999;26:241–250. doi:10.1080/026782999205380
  • Goto Y, Inukai T, Fujita A, Demus D. New nematics with high birefringence. Mol Cryst Liq Cryst. 1995;260:23–38. doi:10.1080/10587259508038681
  • Neubert ME, Keast SS, Kim JM, Miller KJ, Murray RM, Norton AG, Shenoy RA, Walsh ME, Petschek RG. The effect of replacing a benzene ring with a saturated six-membered ring on the mesomorphic properties of 4,4′-disubstituted diphenyldiacetylenes. Liq Cryst. 2004;31:175–184. doi:10.1080/0267829032000159114
  • Hsu HF, Lai YH, Lin SY, Lin WC, Chen JF. Impact on the mesophase transition temperatures of 1,4-bis(naphthyl)-1,3-butadiyne of the attachment of terminal alkoxy chains. Liq Cryst. 2003;30:325–329. doi:10.1080/0267829031000071257
  • Arakawa Y, Nakajima S, Ishige R, Uchimura M, Kang S. Synthesis of diphenyl-diacetylene-based nematic liquid crystals and their high birefringence properties. J Mater Chem. 2012;22:8394–8398. doi:10.1039/c2jm16002a
  • Arakawa Y, Nakajima S, Kang S, Shigeta M, Konishi G. Design of an extremely high birefringence nematic liquid crystal based on a dinaphthyl-diacetylene mesogen. J Mater Chem. 2012;22:13908–13910. doi:10.1039/c2jm32448b
  • Arakawa Y, Nakajima S, Kang S, Konishi G, Watanabe J. Synthesis and evaluation of high-birefringence polymethacrylate having a diphenyl-diacetylene LC moiety in the side chain. J Mater Chem. 2012;22:14346–14348. doi:10.1039/c2jm32489j
  • Uchimura M, Kang S, Ishige R, Watanabe J, Konishi G. Synthesis of liquid crystal molecules based on bis(biphenyl)diacetylene and their liquid crystallinity. Chem Lett. 2010;39:513–515. doi:10.1246/cl.2010.513
  • Miao ZC, Wang D, Zhang YM, Jin ZK, Liu F, Wang F, Yang H. Asymmetrical phenyldiacetylenes liquid crystalline compounds with high birefringence and characteristics of selective reflection. Liq Cryst. 2012;39:1291–1296. doi:10.1080/02678292.2012.714801
  • Tietz JI, Mastriana JR, Sampson P, Seed AJ. Novel 5-(4-alkoxyphenyl)thieno[3,2-b]thiophene-2-carboxylate esters: highly efficient synthesis and mesogenic evaluation of a new class of materials exhibiting the smectic C phase. Liq Cryst. 2012;39:515–530. doi:10.1080/02678292.2012.657698
  • Friedman MR, Toyne KJ, Goodby JW, Hird M. The synthesis and transition temperatures of 2-(4-alkyl- and 4-alkoxy-phenyl)-5-cyano-1-benzofurans and related diaryl-1-benzofurans—an assessment of how deviations from linearity and conformational effects in a core unit affect mesogenicity. J Mater Chem. 2001;11:2759–2772. doi:10.1039/b102837p
  • Kovářová A, Svoboda J, Novotná V, Glogarová M, Salamonczyk M, Pociecha D, Gorecka E. [2]Benzothiophene bent-shaped liquid crystals. Liq Cryst. 2010;37:1501–1513. doi:10.1080/02678292.2010.530299
  • Kang S, Nakajima S, Arakawa Y, Konishi G, Watanabe J. Large extraordinary refractive index in highly birefringent nematic liquid crystals of dinaphthyldiacetylene-based materials. J Mater Chem C. 2013;1:4222–4226. doi:10.1039/c3tc30640b
  • Chai JD, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys. 2008;10:6615–6620. doi:10.1039/b810189b
  • Hehre WJ, Ditchfield R, Pople JA. Self—consistent molecular orbital methods. XII. Further extensions of gaussian—type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys. 1972;56:2257–2261. doi:10.1063/1.1677527
  • Hariharan PC, Pople JA. The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta. 1973;28:213–222. doi:10.1007/BF00533485
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.02. Gaussian: Wallingford CT; 2009.
  • Eakins GL, Alford JS, Tiegs BJ, Breyfogle BE, Stearman CJ. Tuning HOMO–LUMO levels: trends leading to the design of 9-fluorenone scaffolds with predictable electronic and optoelectronic properties. J Phys Org Chem. 2011;24:1119–1128. doi:10.1002/poc.1864
  • Niko Y, Kawauchi S, Otsu S, Tokumaru K, Konishi G. Fluorescence enhancement of pyrene chromophores induced by alkyl groups through σ–π conjugation: systematic synthesis of primary, secondary, and tertiary alkylated pyrenes at the 1, 3, 6, and 8 positions and their photophysical properties. J Org Chem. 2013;78:3196–3207. doi:10.1021/jo400128c
  • Zhang LY, Guan XL, Zhang ZL, Chen XF, Shen ZH, Fan XH, Zhou QF. Preparation and properties of highly birefringent liquid crystalline materials: styrene monomers with acetylenes, naphthyl, and isothiocyanate groups. Liq Cryst. 2010;37:453–462. doi:10.1080/02678291003653641
  • Kula P, Aptacy A, Herman J, Wójciak W, Urban S. The synthesis and properties of fluoro-substituted analogues of 4-butyl-4′-[(4-butylphenyl)ethynyl]biphenyls. Liq Cryst. 2013;40:482–491. doi:10.1080/02678292.2012.757813
  • Kula P, Herman J, Chojnowska O. Synthesis and properties of terphenyl- and quaterphenyl-based chiral diesters. Liq Cryst. 2013;40:83–90. doi:10.1080/02678292.2012.733033
  • Jiang Y, Lu LL, Chen P, Chen XB, Li J, An ZW. Synthesis and properties of allyloxy-based biphenyl liquid crystals with multiple lateral fluoro substituents. Liq Cryst. 2012;39:957–963. doi:10.1080/02678292.2012.688224
  • Zhang YM, Wang D, Miao ZC, Jin SK, Yang H. Novel high birefringence bistolane liquid crystals with lateral fluorosubstituent. Liq Cryst. 2012;39:1330–1339. doi:10.1080/02678292.2012.725871
  • Arakawa Y, Nakajima S, Kang S, Shigeta M, Konishi G. Synthesis and evaluation of dinaphthylacetylene nematic liquid crystals for high-birefringence materials. Liq Cryst. 2012;39:1063–1069. doi:10.1080/02678292.2012.696730
  • Herman J, Dziaduszek J, Dąbrowski R, Kędzierski J, Kowiorski K, Dasari VS, Dhara S, Kula P. Novel high birefringent isothiocyanates based on quaterphenyl and phenylethynyltolane molecular cores. Liq Cryst. 2013;40:1174–1182. doi:10.1080/02678292.2013.808768

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.