161
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and characterisation of laterally substituted noncentrosymmetric main chain hydrogen-bonded polymers

, , &
Pages 721-730 | Received 01 Dec 2013, Accepted 22 Dec 2013, Published online: 17 Jan 2014

References

  • Hann RA, Bloor D. Organic materials for non-linear optics II. The proceedings of the second international symposium on organic materials for non-linear optics organise; 1990 Sept 4. Cambridge: Royal Society of Chemistry; 1991.
  • Butcher PN, Cotter D. The elements of nonlinear optics (Cambridge studies in modern optics). New York, NY: Cambridge University; 1990.
  • Skobel´tsyn DV. Nonlinear optics. New York, NY: Consultants Bureau; 1970.
  • Baldwin GC. An introduction to nonlinear optics. New York, NY: Plenum; 1969.
  • Schwodiauer R, Neugschwandtner GS, Schrattbauer K, Lindner M, Vieytes M, Bauer-Gogonea S, Bauer S. Preparation and characterization of novel piezoelectric and pyroelectric polymer electrets. IEEE Trans Dielectr Electr Insul. 2000;7:578–586.
  • Petty MC. Molecular electronics: prospects for instrumentation and measurement science. Meas Sci Technol. 1996;7:725–736.
  • Tsibouklis J, Petty M, Petty MC, Feast WJ. Pyroelectric polymer structures. Int J Electron. 1995;78:1101–1105.
  • Eberle G, Schmidt H, Eisenmenger W. Piezoelectric polymer electrics. IEE Trans Dielectr Electr Insul. 1996;3:624–646.
  • Chen QX, Payne PA. Industrial applications of piezoelectric polymer transducers. Meas Sci Technol. 1995;6:249–268.
  • Bosshard CH, Bösch M, Liakatas I, Jäger M. Second-order nonlinear optical organic materials: recent developments. In: Günter P, editor. Nonlinear optical effects and materials. New York, NY: Springer; 2000. p. 163–299.
  • Carella A, Castaldo A, Centore R, Fort A, Sigigu A, Tuzi A. Synthesis and second order nonlinear optical properties of new chromophores containing 1,3,4-oxadiazole and thiophene rings. J Chem Soc Perkin Trans. 2002;2:1791–1795.
  • Cui Y, Qian G, Chen L, Wang Z, Gao J, Wang M. Enhanced thermal stability of dipole alignment in inorganic-organic hybrid films containing benzothiazole chromophore. J Phys Chem B. 2006;110:4105–4110.
  • Jazbinsek M, Mutter L, Gunter P. Photonic applications with the organic nonlinear optical crystal DAST. IEEE J Sel Top Quant Electron. 2008;14:1298–1311.
  • Chen J, Marturunkalkul S, Li L, Kumar J, Tripathy SK. Second order nonlinear optical materials. In: Skotheim TA, editor. Handbook of conducting polymer. 2nd ed. New York, NY: CRC Press; 1998. p. 727–743.
  • Chen A, Murphy E, editors. Broadband optical modulators. New York, NY: CRC Press; 2011.
  • Landorf C, Wolf J, Li C, Xie W, Jacobsen J, Simpson J, Dyer DJ. Design of polar organic liquid crystalline thin films. In: Armistead J, Heflin J, Jen A, Norwood R, editors. Organic thin films for photonic applications; trends in optics and photonics series. Washington, DC: Optical Society of America; 2002. p. 145–152.
  • Kamlesh PN, Breedveld V, Weck M. Complementary hydrogen-bonded thermoreversible polymer networks with tunable properties. Macromolecules. 2008;41:3429–3438.
  • Yan X, Li S, Pollock JB, Cook TR, Chen J, Zhang Y, Ji X, Yu Y, Huang F, Stang PJ. Supramolecular polymers with tunable topologies via hierarchical coordination-driven self-assembly and hydrogen bonding interfaces. Proc Nat Acad Soc. 2013;110:15585–15590.
  • Lehn JM. Supramolecular chemistry – molecular information and the design of supramolecular materials. Makromol Chem Macromol Symp. 1993;69:1–17.
  • Lawrence DS, Jiang T, Levett M. Self-assembling supramolecular complexes. Chem Rev. 1995;95:2229–2260.
  • Collins PJ, Hird M. Introduction to liquid crystals. Philadelphia: Taylor & Francis; 1997.
  • Chandrasekhar S. Liquid crystals. Cambridge: Cambridge University; 1977.
  • Paleos CM, Tsiourvas D. Supramolecular hydrogen-bonded liquid crystals. Liq Crys. 2001;28:1127–1161.
  • Paleos CM, Tsiourvas D. Thermotropic liquid crystals formed by intermolecular hydrogen bonding interactions. Angew Chem Int Ed. 1995;34:1696–1711.
  • Kato T, Mizoshita N, Kanie K. Hydrogen-bonded liquid crystalline materials: supramolecular polymeric assembly and the induction of dynamic function. Macromol Rapid Commun. 2001;22:797–814.
  • Sander F, Tussetschlaeger S, Sauer S, Kaller M, Axenov KV, Laschat S. Wedge-shaped 1,2-diamidobenzenes forming columnar mesophases via hydrogen bonding. Liq Cryst. 2012;39:303–312.
  • Cook AG, Wardell JL, Imrie CT. Carbohydrate liquid crystals: synthesis and characterisation of the methyl-6-O-(n-acyl)-alpha-D-glucopyranosides. Chem Phys Lipids. 2011;164:118–124.
  • Hashim R, Sugimura A, Minamikawa H, Heidelberg T. Nature-like synthetic alkyl branched-chain glycolipids: a review on chemical structure and self-assembly properties. Liq Cryst. 2012;39:1–17.
  • Lee JH, Jang I, Hwang SH, Lee SJ, Yoo SH, Jho JY. Self-assembled discotic nematic liquid crystals formed by simple hydrogen bonding between phenol and pyridine moieties. Liq Cryst. 2012;39:973–981.
  • Naoum MM, Fahmi AA, Refaie AA, Alaasar MA. Novel hydrogen-bonded angular supramolecular liquid crystals. Liq Cryst. 2012;39:47–61.
  • Lee SJ, You MK, Lee SW, Lee J, Lee JH, Jho JY. Star-shaped supramolecular liquid crystals formed by hydrogen bonding between phloroglucinol and stilbazole derivatives with different molecular shapes. Liq Cryst. 2011;38:1289–1299.
  • Alaasar M, Tschierske C, Prehm M. Hydrogen-bonded supramolecular complexes formed between isophthalic acid and pyridine-based derivatives. Liq Cryst. 2011;38:925–934.
  • Sastry SS, Lakshmi KV. Inducement of smectic phases in hydrogen-bonded mesogenic systems. Liq Cryst. 2011;38:483–488.
  • Yu L, Pan JS. Mesophases induced by hydrogen bonds between non-mesogens A di-proton acceptor and proton donors. Liq Cryst. 1993;14:829–835.
  • Grunert M, Howie RA, Kaeding A, Irmie CT. Supramolecular chiral liquid crystals. The liquid crystalline behaviour of mixtures of 4,4′-bipyridyl and 4-[(S)-(-)-2-methylbutoxy]benzoic acid. J Mater Chem. 1997;7:211–214.
  • Tian YQ, Xu XH, Zhao YY, Tang XY, Li TJ, Huang XM. Synthesis of new phasmidic liquid crystals induced by intermolecular hydrogen bonding between pyridine moieties and carboxylic acids. Mol Cryst Liq Cryst. 1998;309:19–27.
  • Gundogan B, Binnemans KB. Supramolecular liquid crystals formed by hydrogen bonding between a benzocrown-bearing stilbazole and carboxylic acids. Liq Cryst. 2000;27:851–858.
  • Kato T, Mizoshita N, Kanie K. Hydrogen-bonded liquid crystalline materials: supramolecualr polymeric assembly and the induction of dynamic function. Macromol Rapid Commun. 2001;22:797–814.
  • Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP. Supramolecular polymers. Chem Rev. 2001;101:4071–4098.
  • Martinez-Felipe A, Lu Z, Henderson PA, Picken SJ, Norder B, Imrie CT. Synthesis and characterisation of side chain liquid crystal copolymers containing sulfonic acid groups. Polymer. 2012;53:2604–2612.
  • Stewart D, Imrie CT. Toward supramolecular side-chain liquid crystal polymers. 5. The template receptor approach. Macromolecules. 1997;30:877–884.
  • Stewart D, Imrie CT. Supramolecular side-chain liquid-crystal polymers. Part 1. Thermal behaviour of blends of low molar-mass mesogenic acid and amorphous polymers. J Mat Chem. 1995;5:223–228.
  • Hammers MD, Wichman JJ, Wiegel KN. Supramolecular main-chain liquid crystalline polymers and networks with competitive hydrogen bonding: a study of increased flexibility on distonic mesogenic hydrogen bond acceptors with networks created from tetrakis-, tris- and bis-functionalised pyridyl networking agents. Liq Crys. 2011;38:581–587.
  • Miesen RF, Steven R, Wiegel KN. Supramolecular main-chain liquid crystalline polymers and networks with competitive hydrogen bonding: a study of flexible bis-acids and a mixture of rigid and flexible polypyridyls. Liq Crys. 2011;38:1341–1347.
  • Janssen EL, Salazar IE, Friday SR, Wiegel KN. Supramolecular main-chain liquid crystalline polymers and networks with competitive hydrogen bonding: flexible bis-cinnamic acids as hydrogen bond donors in thermoreversible networks and polymers. Liq Crys. 2012;39:857–863.
  • Fredrickson DD, Hilberg BA, Lasure KK, Tessner JD, Waner AE, Zenner MD, Wiegel KN. Supramolecular main-chain liquid crystalline polymers and networks with competitive hydrogen bonding: a study of rigid networking agents in supramolecular systems. Liq Crys. 2012;39:1243–1251.
  • Cho CM, Wang X, Li JJ, Chaobin H, Xu J. Synthesis and self-assembly of halogen-bond donor-spacer-hydrogen-bond donor molecules: polymeric liquid crystals induced by combination of intermolecular halogen- and hydrogen-bonding interactions. Liq Crys. 2013;40:185–196.
  • March J. Advanced organic chemistry. New York, NY: Wiley; 1985.
  • Dyer DJ, Wolf J, Li C, Landorf C, Brown B, Maas J, Conlin E, Zhao T. Design and synthesis of noncentrosymmetric hydrogen bonded main chain liquid crystalline polymers: towards polar order in organic thin films. Polym Prepr. 2003;44:578–579.
  • Kato T, Mizoshita N, Kanie K. Hydrogen-bonded liquid crystalline materials: supramolecular polymeric assembly and the induction of dynamic function. Macromol Rap Comm. 2001;22:797–814.
  • Hsu CS, Shyu KF, Chuang YY, Wu S-T. Synthesis of laterally substituted bistolane liquid crystals. Liq Cryst. 2000;27:283–287.
  • Greenfield S, Coates D, Brown E, Hittich R. Laterally fluorinated tolanes of low melting point. Liq Cryst. 1993;13:301–305.
  • Liu D, Li H, Wang K, Wen J. Synthesis and characterization of novel fluorinated bistolane-type liquid crystals. Liq Cryst. 2001;28:1463–1467.
  • Neubert ME, Keast SS, Dixon-Polverine Y, Herlinger F, Jirousek MR, Leung K, Murray K, Rambler J. The effect of 2- and 3-lateral substituents on the acid side of 4,4′-disubstituted phenylbenzoates and phenylthiobenzoates on mesomorphic properties. Mol Cryst Liq Cryst. 1994;250:109–123.
  • Okamoto H, Wu J, Morita Y, Takenaka S. Synthesis of 4-alkoxy-2-substituted-benzenethiols and their application to thermotropic liquid crystals. Bull Chem Soc Jpn. 2002;75:175–179.
  • Creed D, Gross JRD, Sullivan SL, Griffin AC, Hoyle CE. Effect of molecular structure on mesomorphism. Twin dimers having methylene, ethylene oxide and siloxane spacers. Mol Cryst Liq Cryst. 1987;149:185–193.
  • Mumford RA, Davies P, Doherty JM, Finke PE, Humes JL, Leudke EH, Maccoss M, Shah SK; Merck & Co, Christopher Hall & Associates Patents and Intellectual Property. Substituted azetidinones useful in the treatment of leukemia. United Kingdom patent GB2266527. 2003 Nov 3.
  • Thea S, Cevasco G, Guanti G, Kashefi-Naini N, Williams A. Reactivity in the para oxo ketene route of ester hydrolysis. The effect of internal nucleophilicity and the irrelevance of B strain. J Org Chem. 1985;50:1867–1872.
  • Kuo MS, Bock MG, Feeidinger RM, Guidotti MT, Lis EV, Pawluczyk JM, Perlow DS, Pettibone DJ, Quigley AG, Reiss DR, Williams PD, Woyden CJ. Nonpeptide oxytocin antagonists: potent, orally bioavailable analogs of L-371,257 containing A 1-R-(pyridyl)ethyl ether terminus. Bioorg Med Chem Lett. 1998;8:3081–3086.
  • Jung ME, Hagenah JA. Synthetic approach to aklavinone using 2-oxo-2H-pyran-5-carboxylate (coumalate) intermediates. J Org Chem. 1987;52:1889–1902.
  • Burke TR, Nelson WL, Buckner CK. Synthesis of 4′- and 5′-hydroxyoxprenolol: pharmacologically active ring-hydroxylated metabolites of oxprenolol. J Med Chem. 1979;22:1535–1537.
  • Hee YB, Xiao YJ, Wu JL, Meng LZ, Wu CT. Synthesis of new chiral calix [4] crown containing (R)-cysteine. Chinese J Chem. 2001;19:193–197.
  • Lam LKT, Yee C, Pai RP, Wattenberg LW. The syntheses of phenolic antioxidants. 1,3,5-tris(4-hydroxyphenoxymethyl)mesitylene and related compounds. Org Prep Proc Int. 1982;14:241–247.
  • Connoly S, Bennion C, Botterell S, Croshoaw PJ, Hallam C, Hardy K, Hartopp P, Jackson CG, King SJ, Lawrence L, Mete A, Murray D, Robinson DH, Smith GM, Stein L, Walters I, Wells E, Withnall WJ. Design and synthesis of a novel and potent series of inhibitors of cytosolic phospholipase A2 based on a 1,3-disubstituted propan-2-one skeleton. J Med Chem. 2002;45:1348–1362.
  • Williams JLR, Adel RE, Carlson JM, Reynolds GA, Borden DG, Ford JAA. Comparison of methods for the preparation of 2- and 4-styrylpyridines. J Org Chem. 1963;28:387–390.
  • Joesten MD, Schaad LJ. Hydrogen bonding. New York, NY: Marcel Dekker; 1974.
  • Vinogradov SN, Linnell RH. Hydrogen bonding. New York, NY: Litton Educational; 1971.
  • Wolf JR. Synthesis and characterization of noncentrosymmetric hydrogen bonded liquid crystalline polymers [dissertation]. Carbondale (IL): Southern Illinois University Carbondale; 2005.
  • Koga T, Ohba H, Takasse H, Sakagami S. Liquid crystalline phases through intermolecular hydrogen bonding formed in a mixture of phenol derivatives and 4,4′-bipyridine. Chem Lett. 1994;11:2071–2074.
  • Price DJ, Willis K, Richardson T, Ungar G, Bruce D. Hydrogen bonded liquid crystals from nitrophenols and alkoxystilbazoles. J Mater Chem. 1997;7: 883–891.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.