332
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

The influence of alkyl chain substitution pattern on the two- and three-dimensional self-assembly of truxenone discogens

, , , , , , & show all
Pages 1152-1161 | Received 10 Feb 2014, Accepted 25 Mar 2014, Published online: 16 Apr 2014

References

  • Kumar S. Chemistry of discotic liquid crystals: from monomers to polymers. Boca Raton (FL): Taylor & Francis; 2011.
  • Pal SK, Setia S, Avinash BS, Kumar S. Triphenylene-based discotic liquid crystals: recent advances. Liq Cryst. 2013;40:1769–1816. doi:10.1080/02678292.2013.854418
  • 3 RJ, Kawata K. Liquid crystals that affected the world: discotic liquid crystals. Liq Cryst. 2011;38:1415–1426. doi:10.1080/02678292.2011.603262
  • Laschat S, Baro A, Steinke N, Giesselmann F, Hägele C, Scalia G, Judele R, Kapatsina E, Sauer S, Schreivogel A, Tosoni M. Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew Chem Int Ed. 2007;46:4832–4887. doi:10.1002/anie.200604203
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36:1902–1929. doi:10.1039/b417320c
  • Shimizu Y, Oikawa K, Nakayama K, Guillon D. Mesophase semiconductors in field effect transistors. J Mater Chem. 2007;17:4223–4229. doi:10.1039/b705534j
  • Funahashi M. Development of liquid-crystalline semiconductors with high carrier mobilities and their application to thin-film transistors. Polym J. 2009;41:459–469. doi:10.1295/polymj.PJ2008324
  • Pisula W, Zorn M, Chang JY, Mullen K, Zentel R. Liquid crystalline ordering and charge transport in semiconducting materials. Macromol Rapid Commun. 2009;30:1179–1202. doi:10.1002/marc.200900251
  • Kato T, Yasuda T, Kamikawa Y, Yoshio M. Self-assembly of functional columnar liquid crystals. Chem Commun. 2009;729–739. doi:10.1039/B816624B
  • Kaafarani BR. Discotic liquid crystals for opto-electronic applications. Chem Mater. 2011;23:378–396. doi:10.1021/cm102117c
  • Bushby RJ, Lozman OR. Discotic liquid crystals 25 years on. Curr Opin Colloid Interface Sci. 2002;7:343–354. doi:10.1016/S1359-0294(02)00085-7
  • Bushby RJ, Lozman OR. Photoconducting liquid crystals. Curr Opin Solid State Mater Sci. 2002;6:569–578. doi:10.1016/S1359-0286(03)00007-X
  • Adam D, Schuhmacher P, Simmerer J, Häussling L, Siemensmeyer K, Etzbachi KH, Ringsdorf H, Haarer D. Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature. 1994;371:141–143. doi:10.1038/371141a0
  • Feng X, Marcon V, Pisula W, Hansen MR, Kirkpatrick J, Grozema F, Andrienko D, Kremer K, Müllen K. Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nat Mater. 2009;8:421–426. doi:10.1038/nmat2427
  • Demenev A, Eichhorn SH, Taerum T, Perepichka DF, Patwardhan S, Grozema FC, Siebbeles LDA, Klenkler R. Quasi temperature independent electron mobility in hexagonal columnar mesophases of an H-bonded benzotristhiophene derivative. Chem Mater. 2010;22:1420–1428. doi:10.1021/cm902453z
  • Chen S, Raad FS, Ahmida M, Kaafarani BR, Eichhorn SH. Columnar mesomorphism of fluorescent board-shaped quinoxalinophenanthrophenazine derivatives with donor-acceptor structure. Org Lett. 2013;15:558–561. doi:10.1021/ol303375x
  • García-Frutos EM, Pandey UK, Termine R, Omenat A, Barberá J, Serrano JL, Golemme A, Gómez-Lor B. High charge mobility in discotic liquid-crystalline triindoles: just a core business? Angew Chem Int Ed. 2011;50:7399–7402. doi:10.1002/anie.201005820
  • Jankowiak A, Pociecha D, Szczytko J, Monobe H, Kaszyński P. Photoconductive liquid-crystalline derivatives of 6-oxoverdazyl. J Am Chem Soc. 2012;134:2465–2468. doi:10.1021/ja209467h
  • Jankowiak A, Pociecha D, Monobe H, Szczytko J, Kaszyński P. Thermochromic discotic 6-oxoverdazyls. Chem Commun. 2012;48:7064–7066. doi:10.1039/c2cc33051b
  • Nekelson F, Monobe H, Shiro M, Shimizu Y. Liquid crystalline and charge transport properties of double-decker cerium phthalocyanine complexes. J Mater Chem. 2007;17:2607–2615. doi:10.1039/b616848p
  • Sienkowska MJ, Monobe H, Kaszynski P, Shimizu Y. Photoconductivity of liquid crystalline derivatives of pyrene and carbazole. J Mater Chem. 2007;17:1392–1398. doi:10.1039/b612253a
  • Yasuda T, Shimizu T, Liu F, Ungar G, Kato T. Electro-functional octupolar π-conjugated columnar liquid crystals. J Am Chem Soc. 2011;133:13437–13444. doi:10.1021/ja2035255
  • Schmidt-Mende L, Fechtenkotter A, Mullen K, Moons E, Friend RH, MacKenzie JD. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science. 2001;293:1119–1122. doi:10.1126/science.293.5532.1119
  • Kang SJ, Ahn S, Kim JB, Schenck C, Hiszpanski AM, Oh S, Schiros T, Loo Y, Nuckolls C. Using self-organization to control morphology in molecular photovoltaics. J Am Chem Soc. 2013;135:2207–2212. doi:10.1021/ja308628z
  • Hori T, Miyake Y, Yamasaki N, Yoshida H, Fujii A, Shimizu Y, Ozaki M. Solution processable organic solar cell based on bulk heterojunction utilizing phthalocyanine derivative. Appl Phys Express. 2010;3:101602–101603. doi:10.1143/APEX.3.101602
  • Hassheider T, Benning SA, Kitzerow HS, Achard MF, Bock H. Color-tuned electroluminescence from columnar liquid crystalline alkyl arenecarboxylates. Angew Chem Int Ed. 2001;40:2060–2063. doi:10.1002/1521-3773(20010601)40:11<2060::AID-ANIE2060>3.0.CO;2-H
  • Diring S, Camerel F, Donnio B, Dintzer T, Toffanin S, Capelli R, Muccini M, Ziessel R. Luminescent ethynyl-pyrene liquid crystals and gels for optoelectronic devices. J Am Chem Soc. 2009;131:18177–18185. doi:10.1021/ja908061q
  • Boden N, Bushby RJ, Clements J, Movaghar B. Device applications of charge transport in discotic liquid crystals. J Mater Chem. 1999;9:2081–2086. doi:10.1039/a903005k
  • Bhalla V, Singh H, Kumar M, Prasad SK. Triazole-modified triphenylene derivative: self-assembly and sensing applications. Langmuir. 2011;27:15275–15281. doi:10.1021/la203774p
  • Bhalla V, Gupta A, Kumar M, Rao DSS, Prasad SK. Self-assembled pentacenequinone derivative for trace detection of picric acid. ACS Appl Mater Interfaces. 2013;5:672–679. doi:10.1021/am302132h
  • Bayn A, Feng X, Müllen K, Haick H. Field effect transistors based on polycyclic aromatic hydrocarbons for the detection and classification of volatile organic compounds. ACS Appl Mater Interfaces. 2013;5:3431–3440. doi:10.1021/am4005144
  • Zilberman Y, Tisch U, Pisula W, Feng X, Müllen K, Haick H. Spongelike structures of hexa-peri-hexabenzocoronene derivatives enhance the sensitivity of chemiresistive carbon nanotubes to nonpolar volatile organic compounds of cancer. Langmuir. 2009;25:5411–5416. doi:10.1021/la8042928
  • Destrade C, Gasparoux H, Babeau A, Tinh NH, Malthete J. Truxene derivatives: a new family of disc-like liquid crystals with an inverted nematic-columnar sequence. Mol Cryst Liq Cryst. 1981;67:37–47. doi:10.1080/00268948108070873
  • Foucher P, Destrade C, Tinh NH, Melthete J, Levelut AM. Hexaalkoxytruxenes, a new series of disc-like mesogens. Mol Cryst Liq Cryst. 1984;108:219–229. doi:10.1080/00268948408078675
  • Tinh NH, Foucher P, Destrade C, Levelut AM, Malthete J. Reentrant mesophases in disc-like liquid crystals. Mol Cryst Liq Cryst. 1984;111:277–292. doi:10.1080/00268948408072438
  • Warmerdam TW, Nolte RJM, Drenth W, Van Miltenburg JC, Frenkel D, Zijlstra RJJ. Discotic liquid crystals. Physical parameters of some 2,3,7,8,12,13-hexa(alkanoyloxy)truxenes. Observation of a re-entrant isotropic phase in a pure disc-like mesogen. Liq Cryst. 1988;3:1087–1104. doi:10.1080/02678298808086564
  • Li LL, Hu P, Wang BQ, Yu WH, Shimizu Y, Zhao KQ. Synthesis and mesomorphism of ether–ester mixed tail c3-symmetrical truxene discotic liquid crystals. Liq Cryst. 2010;37:499–506. doi:10.1080/02678290903215337
  • Gomez-Esteban S, Pezella M, Domingo A, Hennrich G, Gómez-Lor B. Solvent-dependent truxene-based nanostructures. Chem Eur J. 2013;19:16080–16086. doi:10.1002/chem.201301069
  • Isoda K, Yasuda T, Kato T. Truxene-based columnar liquid crystals: self-assembled structures and electro-active properties. Chem Asian J. 2009;4:1619–1625. doi:10.1002/asia.200900038
  • Zhao KQ, Chen C, Monobe H, Hu P, Wang BQ, Shimizu Y. Three-chain truxene discotic liquid crystal showing high charged carrier mobility. Chem Commun. 2011;47:6290–6292. doi:10.1039/c1cc10299k
  • Monobe H, Chen C, Zhao KQ, Hu P, Miyake Y, Fujii A, Ozaki M, Shimizu Y. Bipolar carrier transport in tri-substituted octyloxy-truxene DLC. Mol Cryst Liq Cryst. 2011;545:149/[1373]–155/[1379]. doi:10.1080/15421406.2011.568891
  • Ni HL, Monobe H, Hu P, Wang BQ, Shimizu Y, Zhao KQ. Truxene discotic liquid crystals with two different ring substituents: synthesis, mesomorphism and high charged carrier mobility. Liq Cryst. 2013;40:411–420. doi:10.1080/02678292.2012.755224
  • Sun Y, Xiao K, Liu Y, Wang J, Pei J, Yu G, Zhu D. Oligothiophene-functionalized truxene: star-shaped compounds for organic field-effect transistors. Adv Funct Mater. 2005;15:818–822. doi:10.1002/adfm.200400380
  • Bai C, Liu M. From chemistry to nanoscience: not just a matter of size. Angew Chem Int Ed. 2013;52:2678–2683. doi:10.1002/anie.201210058
  • Katsonis N, Marchenko A, Fichou D. Substrate-induced pairing in 2,3,6,7,10,11-hexakis-undecalkoxy-triphenylene self-assembled monolayers on au(111). J Am Chem Soc. 2003;125:13682–13683. doi:10.1021/ja0375737
  • Wu P, Zeng Q, Xu S, Wang C, Yin S, Bai CL. Molecular superlattices induced by alkyl substitutions in self-assembled triphenylene monolayers. Chem Phys Chem. 2001;2:750–754. doi:10.1002/1439-7641(20011217)2:12<750::AID-CPHC750>3.0.CO;2-9
  • Ma XJ, Yang YL, Deng K, Zeng QD, Wang C, Zhao KQ, Hu P, Wang BQ. Identification of a peripheral substitution symmetry effect in self-assembled architectures. Chem Phys Chem. 2007;8:2615–2620. doi:10.1002/cphc.200700424
  • Ma X, Yang Y, Deng K, Zeng Q, Zhao KQ, Wang C, Bai C. Molecular miscibility characteristics of self-assembled 2D molecular architectures. J Mater Chem. 2008;18:2074–2081. doi:10.1039/b713426f
  • Zhang X, Wang H, Wang S, Shen Y, Yang Y, Deng K, Zhao KQ, Zeng Q, Wang C. Triphenylene substituted pyrene derivative: synthesis and single molecule investigation. J Phys Chem C. 2013;117:307–312. doi:10.1021/jp3095616
  • Wang J, Yan J, Ding L, Ma Y, Pei J. One-dimensional microwires formed by the co-assembly of complementary aromatic donors and acceptors. Adv Funct Mater. 2009;19:1746–1752. doi:10.1002/adfm.200900093
  • Luo J, Chen L, Wang JY, Lei T, Li LY, Pei J, Song YA. A co-assembly system of an aromatic donor and acceptor: charge transfer, electric bistability and photoconductivity. New J Chem. 2010;34:2530–2533. doi:10.1039/c0nj00536c
  • Wang JY, Yang J, Li Z, Han JM, Ma Y, Bian J, Pei J. Isomeric effect on microscale self-assembly: interplay between molecular property and solvent polarity in the formation of 1D n-type microbelts. Chem Eur J. 2008;14:7760–7764. doi:10.1002/chem.200800396
  • Yang ZY, Tao Y, Chen T, Yan HJ, Wang ZX. Hydrogen bonding network of truxenone on a graphite surface studied with scanning tunneling microscopy and theoretical computation. Phys Chem Chem Phys. 2013;15:2105–2108. doi:10.1039/c2cp42828h
  • Chen F, Hu Z, Ji Y, Zhao A, Wang B, Yang J, Hou JG. Interactions in different domains of truxenone supramolecular assembly on Au(111). Phys Chem Chem Phys. 2012;14:3980–3986. doi:10.1039/c2cp23190e
  • Liu J, Zhang X, Yan HJ, Wang D, Wang JY, Pei J, Wan LJ. Solvent-controlled 2D host−guest (2,7,12-trihexyloxytruxene/coronene) molecular nanostructures at organic liquid/solid interface investigated by scanning tunneling microscopy. Langmuir. 2010;26:8195–8200. doi:10.1021/la904568q
  • Liu J, Wang D, Wang JY, Pei J, Wan LJ. Scanning tunneling microscopy investigation of copper phthalocyanine and truxenone derivative binary superstructures on graphite. Chem Asian J. 2011;6:424–429. doi:10.1002/asia.201000628
  • Liu J, Zhang X, Wang D, Wang JY, Pei J, Stang PJ, Wan LJ. Shape-persistent two-component 2D networks with atomic-size tunability. Chem Asian J. 2011;6:2426–2430. doi:10.1002/asia.201100431
  • Liu J, Chen T, Deng X, Wang D, Pei J, Wan LJ. Chiral hierarchical molecular nanostructures on two-dimensional surface by controllable trinary self-assembly. J Am Chem Soc. 2011;133:21010–21015. doi:10.1021/ja209469d

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.