109
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

The role of the liquid crystalline state in the bundling of Salmonella enterica serovar Typhimurium flagella

, , , , &
Pages 1277-1285 | Received 28 Nov 2013, Accepted 27 Apr 2014, Published online: 13 May 2014

References

  • Darnton NC, Berg HC. Force-extension measurements on bacterial flagella: triggering polymorphic transformations. Biophys J. 2007;92(6):2230–2236. doi:10.1529/biophysj.106.094037.
  • Hasegawa E, Kamiya R, Asakura S. Thermal transition in helical forms of Salmonella flagella. J Mol Biol. 1982;160(4):609–621. doi:10.1016/0022-2836(82)90318-7.
  • Yonekura K, Maki-Yonekura S, Namba K. Growth mechanism of the bacterial flagellar filament. Res Microbiol. 2002;153(4):191–197. doi:10.1016/S0923-2508(02)01308-6.
  • Vonderviszt F, Sonoyama M, Tasumi M, Namba K. Conformational adaptability of the terminal regions of flagellin. Biophys J. 1992;63(6):1672–1677. doi:10.1016/S0006-3495(92)81751-4.
  • Samatey FA, Imada K, Nagashima S, Vonderviszt F, Kumasaka T, Yamamoto M, Namba K. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature. 2001;410(6826):331–337. doi:10.1038/35066504.
  • Kitao A, Yonekura K, Maki-Yonekura S, Samatey FA, Imada K, Namba K, Go N. Switch interactions control energy frustration and multiple flagellar filament structures. Proc Natl Acad Sci. 2006;103(13):4894–4899. doi:10.1073/pnas.0510285103.
  • Kim M, Bird JC, Van Parys AJ, Breuer KS, Powers TR. A macroscopic scale model of bacterial flagellar bundling. Proc Natl Acad Sci. 2003;100(26):15481–15485. doi:10.1073/pnas.2633596100.
  • Cisneros L, Dombrowski C, Goldstein RE, Kessler JO. Reversal of bacterial locomotion at an obstacle. Phys Rev E. 2006;73(3):0309011–0309014. doi:10.1103/PhysRevE.73.030901.
  • Turner L, Zhang R, Darnton NC, Berg HC. Visualization of flagella during bacterial swarming. J Bacteriol. 2010;192(13):3259–3267. doi:10.1128/JB.00083-10.
  • Kamiya R, Hotani H, Asakura S. Polymorphic transition in bacterial flagella. Symp Soc Exp Biol. 1982;35:53–76.
  • Kanto S, Okino H, Aizawa SI, Yamaguchi S. Amino acids responsible for flagellar shape are distributed in terminal regions of flagellin. J Mol Biol. 1991;219(3):471–480. doi:10.1016/0022-2836(91)90187-B.
  • Hyman HC, Trachtenberg S. Point mutations that lock Salmonella typhimurium flagellar filaments in the straight right-handed and left-handed forms and their relation to filament superhelicity. J Mol Biol. 1991;220(1):79–88. doi:10.1016/0022-2836(91)90382-G.
  • Yamaguchi S, Fujita H, Sugata K, Taira T, Iino T. Genetic analysis of H2, the structural gene for phase-2 flagellin in Salmonella. J Gen Microbiol. 1984;130:255–265.
  • Fujita H, Yamaguchi S, Taira T, IIno T. A simple method for the isolation of flagellar shape mutants in Salmonella. J Gen Microbiol. 1981;125(1):213–216.
  • Schmitt CK, Darnell SC, O’Brien AD. The attenuated phenotype of a Salmonella typhimurium flgm mutant is related to expression of flic flagellin. J Bacteriol. 1996;178(10):2911–2915.
  • Silverman M, Zieg J, Hilmen M, Simon M. Phase variation in Salmonella: genetic analysis of a recombinational switch. Proc Natl Acad Sci. 1979;76(1):391–395. doi:10.1073/pnas.76.1.391.
  • Ikeda JS, Schmitt CK, Darnell SC, Watson PR, Bispham J, Wallis TS, Weinstein DL, Metcalf ES, Adams P, O’Connor CD, O’Brien AD. Flagellar phase variation of Salmonella enterica serovar Typhimurium contributes to virulence in the murine typhoid infection model but does not influence Salmonella-induced enteropathogenesis. Infect Immun. 2001;69(5):3021–3030. doi:10.1128/IAI.69.5.3021-3030.2001.
  • Bonifield HR, Hughes KT. Flagellar phase variation in Salmonella enterica is mediated by a posttranscriptional control mechanism. J Bacteriol. 2003;185(12):3567–3574. doi:10.1128/JB.185.12.3567-3574.2003.
  • Barry E, Hensel Z, Dogic Z, Shribak M, Oldenbourg R. Entropy-driven formation of a chiral liquid-crystalline phase of helical filaments. Phys Rev Lett. 2006;96(1):0183051–0183054. doi:10.1103/PhysRevLett.96.018305.
  • Kumara MT, Srividya N, Muralidharan S, Tripp BC. Bioengineered flagella protein nanotubes with cysteine loops: self-assembly and manipulation in an optical trap. Nano Lett. 2006;6(9):2121–2129. doi:10.1021/nl060598u.
  • Komoriya K, Shibano N, Higano T, Azuma N, Yamaguchi S, Aizawa SI. Flagellar proteins and type III-exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mol Microbiol. 1999;34(4):767–779. doi:10.1046/j.1365-2958.1999.01639.x.
  • Krysinski EP, Heimsch RC. Use of enzyme-labeled antibodies to detect Salmonella in foods. Appl Environ Microbiol. 1977;33(4):947.
  • Vonderviszt F, Kanto S, Aizawa SI, Namba K. Terminal regions of flagellin are disordered in solution. J Mol Biol. 1989;209(1):127–133. doi:10.1016/0022-2836(89)90176-9.
  • Pirl U. Der mindestabstand von n in der einheitskreisscheibe gelegenen punkten. Mathematische Nachrichten. 1969;40(1-3):111–124. doi:10.1002/mana.19690400110.
  • Barth A, Zscherp C. What vibrations tell about proteins. Q Rev Biophys. 2002;35(4):369–430. doi:10.1017/S0033583502003815.
  • Yamashita I, Suzuki H, Namba K. Multiple-step method for making exceptionally well-oriented liquid-crystalline sols of macromolecular assemblies. J Mol Biol. 1998;278(3):609–615. doi:10.1006/jmbi.1998.1710.
  • Van Roij R, Mulder B. High-density scaling solution to the Onsager model of lyotropic nematics. Europhysics Letters (EPL). 1996;34(3):201–206. doi:10.1209/epl/i1996-00439-9.
  • Fatkullin I, Slastikov VA. A note on the Onsager model of nematic phase transitions. Commun Math Sci. 2005;3(1):21–26. doi:10.4310/CMS.2005.v3.n1.a2.
  • Onsager L. The effects of shape on the interaction of colloidal particles. Ann N Y Acad Sci. 1949;51:627–659. doi:10.1111/j.1749-6632.1949.tb27296.x.
  • Straley JP. Theory of piezoelectricity in nematic liquid crystals, and of the cholesteric ordering. Phys Rev. 1976;14(5):1835–1841. doi:10.1103/PhysRevA.14.1835.
  • Iino T, Mitani M. Flagella-shape mutants in Salmonella. Microbiology. 1966;44(1):27–40.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.