560
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

Enhancement of electro-optical response of ferroelectric liquid crystal: the role of graphene quantum dots

, , , , &
Pages 1719-1725 | Received 20 May 2014, Accepted 25 Jul 2014, Published online: 21 Aug 2014

References

  • Lee S-W, Mao C, Flynn CE, Belcher AM. Ordering of quantum dots using genetically engineered viruses. Science. 2002;296:892–895. doi:10.1126/science.1068054
  • Lee W-K, Choi J-H, Na H-J, Lim J-H, Han J-M, Hwang J-Y, Seo D. Low-power operation of vertically aligned liquid-crystal system via anatase-TiO2 nanoparticle dispersion. Opt Lett. 2009;34:3653–3655. doi:10.1364/OL.34.003653
  • Tong X, Zhao Y. Liquid-crystal gel-dispersed quantum dots: reversible modulation of photoluminescence intensity using an electric field. J Am Chem Soc. 2007;129:6372–6373. doi:10.1021/ja0711720
  • Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials. 2007;28:4717–4732. doi:10.1016/j.biomaterials.2007.07.014
  • Kang S, Huh HH, Son KC, Lee CS, Kim KH, Huh C, Kim E. Light-emitting diode applications of colloidal CdSe/ZnS quantum dots embedded in TiO2-δ thin film. Phys Status Solidi B. 2009;246:889–892. doi:10.1002/pssb.200880615
  • Kikuchi E, Kitada S, Ohno A, Aramaki S, Maenosono S. Solution-processed polymer-free photovoltaic devices consisting of PbSe colloidal quantum dots and tetrabenzoporphyrins. Appl Phys Lett. 2008;92:173307. doi:10.1063/1.2920166
  • Lagally MG. Self-organized quantum dots. J Chem Educ. 1998;75:277. doi:10.1021/ed075p277
  • Kumar A, Prakash J, Khan MT, Dhawan S, Biradar A. Memory effect in cadmium telluride quantum dots doped ferroelectric liquid crystals. Appl Phys Lett. 2010;97:163113. doi:10.1063/1.3495780
  • Kumar A, Biradar A. Effect of cadmium telluride quantum dots on the dielectric and electro-optical properties of ferroelectric liquid crystals. Phy Rev E. 2011;83:041708. doi:10.1103/PhysRevE.83.041708
  • Kumar A, Prakash J, Deshmukh AD, Haranath D, Silotia P, Biradar A. Enhancing the photoluminescence of ferroelectric liquid crystal by doping with ZnS quantum dots. Appl Phys Lett. 2012;100:134101. doi:10.1063/1.3698120
  • Basu R, Finkenstadt D, Brereton P. Quantum dots and nematic liquid crystal mediated interactions. Bull Am Phys Soc. 2014.
  • Prakash J, Choudhary A, Mehta D, Biradar A. Effect of carbon nanotubes on response time of ferroelectric liquid crystals. Phy Rev E. 2009;80:012701. doi:10.1103/PhysRevE.80.012701
  • Malik A, Choudhary A, Silotia P, Biradar A, Singh V, Kumar N. Effect of graphene oxide nanomaterial in electroclinic liquid crystals. J Appl Phys. 2010;108:124110. doi:10.1063/1.3524540
  • Jin SH, Kim DH, Jun GH, Hong SH, Jeon S. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano. 2013;7:1239–1245. doi:10.1021/nn304675g
  • Zhang Z, Chang K, Peeters F. Tuning of energy levels and optical properties of graphene quantum dots. Phy Rev B. 2008;77:235411. doi:10.1103/PhysRevB.77.235411
  • Kim S, Hwang SW, Kim M-K, Shin DY, Shin DH, Kim CO, Yang SB, Park JH, Hwang E, Choi SH, Ko G, Sim S, Sone C, Choi HJ, Bae S, Hong BH. Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano. 2012;6:8203–8208. doi:10.1021/nn302878r
  • Zhang Z, Zhang J, Chen N, Qu L. Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ Sci. 2012;5:8869–8890. doi:10.1039/c2ee22982j
  • Zheng XT, Than A, Ananthanaraya A, Kim D-H, Chen P. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano. 2013;7:6278–6286. doi:10.1021/nn4023137
  • Lee W, Wang C-Y, Shih Y-C. Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host. Appl Phys Lett. 2004;85:513–515. doi:10.1063/1.1771799
  • Schymura S, Kühnast M, Lutz V, Jagiella S, Dettlaff-Weglikowska U, Roth S, Giesselmann F, Tschierske C, Scalia G, Lagerwall J. Towards efficient dispersion of carbon nanotubes in thermotropic liquid crystals. Adv Funct Mater. 2010;20:3350–3357. doi:10.1002/adfm.201000539
  • Cho M-J, Park H-G, Jeong H-C, Lee J-W, Jung YH, Kim D-H, Kim J-H, Lee J-W, Seo D-S. Superior fast switching of liquid crystal devices using graphene quantum dots. Liq Cryst. 2014;41(6):761–767. doi:10.1080/02678292.2014.889233
  • Cote LJ, Kim F, Huang J. Langmuir−Blodgett assembly of graphite oxide single layers. J Am Chem Soc. 2008;131:1043–1049. doi:10.1021/ja806262m
  • Pan D, Zhang J, Li Z, Wu M. Hydrothermal route for cutting graphene sheets into blue luminescent graphene quantum dots. Adv Mater. 2010;22:734–738. doi:10.1002/adma.200902825
  • Eda G, Chhowalla M. Chemically derived graphene oxide: towards large area thin film electronics and optoelectronics. Adv Mater. 2010;22:2392–2415. doi:10.1002/adma.200903689
  • Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song LI, Alemany LB, Zhan X, Gao G, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu JJ, Ajayan PM. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012;12:844–849. doi:10.1021/nl2038979
  • Ferrari AC. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Comm. 2007;143:47–57. doi:10.1016/j.ssc.2007.03.052
  • Kim S, Hee Shin D, Oh Kim C, Seok Kang S, Sin Joo S, Choi S-H, Won Hwang S, Sone C. Size-dependence of Raman scattering from graphene quantum dots: interplay between shape and thickness. Appl Phys Lett. 2013;102:053108. doi:10.1063/1.4790641
  • Tuinstra F, Koenig JL. Raman spectrum of graphite. J Chem Phys. 1970;53:1126–1130. doi:10.1063/1.1674108
  • Twombly CW, Evans JS, Smalyukh II. Optical manipulation of self-aligned graphene flakes in liquid crystals. Opt Express. 2013;21:1324–1334. doi:10.1364/OE.21.001324
  • Tie W, Bhattacharyya SS, Lim YJ, Lee SW, Lee TH, Lee YH, Lee SH. Dynamic electro-optic response of graphene/graphitic flakes in nematic liquid crystals. Opt Express. 2013;21:19867–19879.
  • Kumar A, Tripathi S, Deshmukh A, Haranath D, Singh P, Biradar A. Time evolution photoluminescence studies of quantum dot doped ferroelectric liquid crystals. J Phys D: Appl Phys. 2013;46:195302. doi:10.1088/0022-3727/46/19/195302
  • Yamashita S, Saito Y, Choi J. Carbon nanotubes and graphene for photonic applications. Cambridge: Woodhead Publishing Limited; 2013.
  • Joshi T, Ganguly P, Haranath D, Singh S, Biradar A. Tuning the photoluminescence of ferroelectric liquid crystal by controlling the size of dopant ZnO quantum dots. Mater Lett. 2014;114:156–158. doi:10.1016/j.matlet.2013.09.110
  • Tripathi S, Prakash J, Chandran A, Joshi T, Kumar A, Dhar A, Biradar AM. Enhanced dielectric and electro-optical properties of a newly synthesised ferroelectric liquid crystal material by doping gold nanoparticle-decorated multiwalled carbon nanotubes. Liq Cryst. 2013;40:1255–1262. doi:10.1080/02678292.2013.805830

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.