323
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Fast switching response and dielectric behaviour of fullerene/ferroelectric liquid crystal nanocolloids

, &
Pages 1726-1732 | Received 20 Jun 2014, Accepted 25 Jul 2014, Published online: 21 Aug 2014

References

  • Hegmann T, Qi H, Marx VM. Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications. J Inorg Organomet Polym Mater. 2007;17:483–508. doi:10.1007/s10904-007-9140-5
  • Bisoyi HK, Kumar S. Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem Soc Rev. 2011;40:306–319. doi:10.1039/b901793n
  • Lagerwall JPF, Scalia G. Carbon nanotubes in liquid crystals. J Mater Chem. 2008;18:2890–2898. doi:10.1039/b802707b
  • Garbovskiy YA, Glushchenko AV. Liquid crystalline colloids of nanoparticles: preparation, properties, and applications. Solid State Phys. 2011;62:1–74.
  • Podgornov F, Suvorova A, Lapanik A, Haase W. Electrooptic and dielectric properties of ferroelectric liquid crystal/single walled carbon nanotubes dispersions confined in thin cells. Chem Phys Lett. 2009;479:206–210.
  • Arora P, Mikulko A, Podgornov F, Haase W. Dielectric and electro-optic properties of new ferroelectric liquid crystalline mixture doped with carbon nanotubes. Mol Cryst Liq Cryst. 2009;502:1–8. doi:10.1080/15421400902813592
  • Prakash J, Choudhary A, Mehta DS, Biradar AM. Effect of carbon nanotubes on response time of ferroelectric liquid crystals. Phys Rev E. 2009;80:012701–4.
  • Prakash J, Kumar A, Joshi T, Mehta DS, Biradar AM, Haase W. Spontaneous polarization in smectic A phase of carbon nanotubes doped deformed helix ferroelectric liquid crystal. Mol Cryst Liq Cryst. 2011;541:166/[404]–176/[414]. doi:10.1080/15421406.2011.570216
  • Gupta S, Kumar A, Srivastava A, Manohar R. Modification in dielectric properties of SWCNT doped ferroelectric liquid crystals. J Non Cryst Solids. 2011;357:1822–1826. doi:10.1016/j.jnoncrysol.2011.01.034
  • Shukla RK, Raina KK, Hamplova V, Kaspar M, Bubnov A. Dielectric behaviour of the composite system: multiwall carbon nanotubes dispersed in ferroelectric liquid crystal. Phase Trans. 2011;84:850–857. doi:10.1080/01411594.2011.558300
  • Tripathi S, Prakash J, Chandran A, Joshi T, Kumar A, Dhar A, Biradar AM. Enhanced dielectric and electro-optical properties of a newly synthesised ferroelectric liquid crystal material by doping gold nanoparticle-decorated multiwalled carbon nanotubes. Liq Cryst. 2013;40:1255–1262.
  • Sood N, Khosla S, Singh D, Bawa SS. Dielectric investigations of pure and carbon nanotube-doped deformed helix ferroelectric liquid crystals. Liq Cryst. 2012;39(10):1169–1174.
  • Lebovka N, Goncharuk A, Bezrodna T, Chashechnikova I, Nesprava V. Microstructure and electrical conductivity of hybrid liquid crystalline composites including 5CB, carbon nanotubes and clay platelets. Liq Cryst. 2012;39(5):531–538. doi:10.1080/02678292.2012.660201
  • Lim YJ, Bhattacharyya SS, Tie W, Park HR, Lee YH, Lee SH. Effects of carbon nanotubes on electro-optic characteristics in vertically aligned liquid crystal display. Liq Cryst. 2013;40(9):1202–1208. doi:10.1080/02678292.2013.806997
  • Lee KJ, Park HG, Jeong HC, Kim DH, Seo DS, Lee JW, Moon BM. Enhanced electro-optical behaviour of a liquid crystal system via multi-walled carbon nanotube doping. Liq Cryst. 2014;41(1):25–29. doi:10.1080/02678292.2013.829248
  • Matsuzawa N, Dixon DA, Fukunaga T. Semiempirical calculations of dihydrogenated buckminsterfullerenes, C60H2. J Phys Chem. 1992;96:7594–7604. doi:10.1021/j100198a021
  • Prato M. [60]Fullerene chemistry for materials science applications. J Mater Chem. 1997;7:1097–1109. doi:10.1039/a700080d
  • Axe JD, Moss SC, Neumann DA. Structure and dynamics of crystalline C60. Solid State Phys. 1994;48:149–224.
  • Haddon RC. Electronic structure, conductivity and superconductivity of alkali metal doped (C60). Acc Chem Res. 1992;25:127–133. doi:10.1021/ar00015a005
  • Haddon RC. Chemistry of the fullerenes: the manifestation of strain in a class of continuous aromatic molecules. Science. 1993;261:1545–1550. doi:10.1126/science.261.5128.1545
  • Bushby RJ, Hamley IW, Liu Q, Lozman OR, Lydon JE. Self-assembled columns of fullerene. J Mater Chem. 2005;15:4429–4434. doi:10.1039/b509492e
  • Campidelli S, Brandmuller T, Hirsch A, Saez IM, Goodby JW, Deschenaux R. An optically active liquid crystalline hexa-adduct of [60] fullerene which displays supramolecular helical organization. Chem Commun. 2006;41:4282–4284. doi:10.1039/b610350b
  • Deschenaux R, Donnio B, Guillon D. Liquid crystalline fullerodendrimers. New J Chem. 2007;31:1064–1073.
  • Köysal O, San SE. Effect on response time and diffraction efficiency of co-usage azo dye and carbon nanoparticle in nematic liquid crystal. Synth Metals. 2008;158:527–531. doi:10.1016/j.synthmet.2008.03.017
  • Trushkevych O, Ackerman P, Crossland WA, Smalyukh II. Optically generated adaptive localized structures in confined chiral liquid crystals doped with fullerene. Appl Phys Lett. 2010;97:201906. doi:10.1063/1.3518477
  • Srivastava AK, Kim M, Kim SM, Kim MK, Lee K, Lee YH, Lee MH, Lee SH. Dielectrophoretic and electrophoretic force analysis of colloidal fullerenes in a nematic liquid-crystal medium. Phys Rev E. 2009;80:051702. doi:10.1103/PhysRevE.80.051702
  • Chen PS, Huang CC, Liu YW, Chao CY. Effect of insulating-nanoparticles addition on ion current and voltage-holding ratio in nematic liquid crystal cells. Appl Phys Lett. 2007;90:211111. doi:10.1063/1.2740581
  • Malik A, Choudhary A, Silotia P, Biradar AM, Singh VK, Kumar N. Effect of graphene oxide nanomaterial in electroclinic liquid crystals. J Appl Phys. 2010;108:124110–124116. doi:10.1063/1.3524540
  • Kovalchuk AV, Golovataya NM, Shevchuk AF, Naiko DA, Basiuk EV. Dielectric properties of (C60 + C70) ferroelectric liquid crystal composite. Full Nanot Carb Nanostruc. 2004;12:681–690. doi:10.1081/FST-200026956
  • Shukla RK, Liebig CM, Evans DR, Haase W. Electro-optical behaviour and dielectric dynamics of harvested ferroelectric LiNbO3 nanoparticle-doped ferroelectric liquid crystal nanocolloids. RSC Adv. 2014;4:18529–18536. doi:10.1039/c4ra00183d
  • Larsen C, Barzegar HR, Nitze F, Wagberg T, Edman L. On the fabrication of crystalline C60 nanorod transistors from solution. Nanotechnology. 2012;23:344015. doi:10.1088/0957-4484/23/34/344015
  • Malik S, Fujita N, Mukhopadhyay P, Goto Y, Kaneko K, Ikeda T, Shinkai S. Creation of 1D [60] fullerene superstructures and its polymerization by γ-ray irradiation. J Mater Chem. 2007;17:2454–2458. doi:10.1039/b701583f
  • Carlsson T, Zeks B, Filipic C, Levstik A. Theoretical model of the frequency and temperature dependence of the complex dielectric constant of ferroelectric liquid crystals near the smectic-C*–smectic-A phase transition. Phys Rev A. 1990;42:877–889. doi:10.1103/PhysRevA.42.877
  • Musevic I, Blinc R, Zeks B. Physics of ferroelectric and antiferroelectric liquid crystals. Singapore: World Scientific Pub Co.; 2000.
  • Lagerwall ST. Ferroelectric and antiferroelectric liquid crystals. Weinheim: Wiley-VCH; 1999.
  • Podgornov FV, Ryzhkova AV, Haase W. Influence of gold nanorods size on electro-optical and dielectric properties of ferroelectric liquid crystals. Appl Phys Lett. 2010;97:212903. doi:10.1063/1.3517486

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.