448
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A small-angle X-ray scattering study of nanoparticle assembly in an aligned nematic liquid crystal

, , &
Pages 1791-1802 | Received 24 Jun 2014, Accepted 29 Jul 2014, Published online: 27 Aug 2014

References

  • Hegmann T, Qi H, Marx VM. Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications. J Inorg Organomet Polym Mater. 2007;17:483–508. doi:10.1007/s10904-007-9140-5
  • Lagerwall JPF, Scalia G. Carbon nanotubes in liquid crystals. J Mater Chem. 2008;18:2890–2898. doi:10.1039/b802707b
  • Schymura S, Kühnast M, Lutz V, Jagiella S, Dettlaff-Weglikowska U, Roth S, Giesselmann F, Tschierske C, Scalia G, Lagerwall J. Towards efficient dispersion of carbon nanotubes in thermotropic liquid crystals. Adv Funct Mater. 2010;20:3350–3357. doi:10.1002/adfm.201000539
  • Koenig GM, Lin I-H, Abbott NL. Chemoresponsive assemblies of microparticles at liquid crystalline interfaces. Proc Natl Acad Sci U S A. 2010;107:3998–4003. doi:10.1073/pnas.0910931107
  • Muševič I. Integrated and topological liquid crystal photonics. Liq Cryst. 2014;41:418–429. doi:10.1080/02678292.2013.837516
  • Shiraishi Y, Toshima N, Maeda K, Yoshikawa H, Xu J, Kobayashi S. Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles. Appl Phys Lett. 2002;81:2845–2847. doi:10.1063/1.1511282
  • Dhar R, Pandey AS, Pandey MB, Kumar S, Dabrowski R. Optimization of the display parameters of a room temperature twisted nematic display material by doping single-wall carbon nanotubes. Appl Phys Express. 2008;1:121501. doi:10.1143/APEX.1.121501
  • Sikharulidze D. Nanoparticles: an approach to controlling an electro-optical behavior of nematic liquid crystals. Appl Phys Lett. 2005;86:033507. doi:10.1063/1.1855416
  • Kossyrev PA, Yin A, Cloutier SG, Cardimona DA, Huang D, Alsing PM, Xu JM. Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. Nano Lett. 2005;5:1978–1981. doi:10.1021/nl0513535
  • Lavrentovich OD, Lazo I, Pishnyak OP. Nonlinear electrophoresis of dielectric and metal spheres in a nematic liquid crystal. Nature. 2010;467:947–950. doi:10.1038/nature09427
  • Kishita T, Kondo N, Takahashi K, Ichikawa M, Fukuda J, Kimura Y. Interparticle force in nematic colloids: comparison between experiment and theory. Phys Rev E. 2011;84:19–22. doi:10.1103/PhysRevE.84.021704
  • Conradi M, Ravnik M, Bele M, Zorko M, Žumer S, Muševič I. Janus nematic colloids. Soft Matter. 2009;5:3905–3912. doi:10.1039/b905631a
  • Völtz C, Maeda Y, Tabe Y, Yokoyama H. Director-configurational transitions around microbubbles of hydrostatically regulated size in liquid crystals. Phys Rev Lett. 2006;97:227801. doi:10.1103/PhysRevLett.97.227801
  • Stark H. Physics of colloidal dispersions in nematic liquid crystals. Phys Rep. 2001;351:387–474. doi:10.1016/S0370-1573(00)00144-7
  • Škarabot M, Ravnik M, Žumer S, Tkalec U, Poberaj I, Babič D, Osterman N, Muševič I. Interactions of quadrupolar nematic colloids. Phys Rev E. 2008;77:031705. doi:10.1103/PhysRevE.77.031705
  • Musevic I, Skarabot M, Tkalec U, Ravnik M, Zumer S. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science. 2006;313:954–958. doi:10.1126/science.1129660
  • Škarabot M, Ravnik M, Žumer S, Tkalec U, Poberaj I, Babič D, Muševič I. Hierarchical self-assembly of nematic colloidal superstructures. Phys Rev E. 2008;77:061706. doi:10.1103/PhysRevE.77.061706
  • Škarabot M, Ravnik M, Žumer S, Tkalec U, Poberaj I, Babič D, Osterman N, Muševič I. Two-dimensional dipolar nematic colloidal crystals. Phys Rev E. 2007;76:051406. doi:10.1103/PhysRevE.76.051406
  • Ognysta U, Nych A, Uzunova V, Pergamenschik V, Nazarenko V, Škarabot M, Muševič I. Square colloidal lattices and pair interaction in a binary system of quadrupolar nematic colloids. Phys Rev E. 2011;83:041709. doi:10.1103/PhysRevE.83.041709
  • Nych A, Ognysta U, Škarabot M, Ravnik M, Žumer S, Muševič I. Assembly and control of 3D nematic dipolar colloidal crystals. Nat Commun. 2013;4:1489. doi:10.1038/ncomms2486
  • Humar M, Škarabot M, Ravnik M, Žumer S, Poberaj I, Babič D, Muševič I. Electrically tunable diffraction of light from 2D nematic colloidal crystals. Eur Phys J E. 2008;27:73–79. doi:10.1140/epje/i2008-10353-0
  • Koenig GM, De Pablo JJ, Abbott NL. Characterization of the reversible interaction of pairs of nanoparticles dispersed in nematic liquid crystals. Langmuir. 2009;25:13318–13321. doi:10.1021/la903464t
  • Koenig GM, Ong R, Cortes AD, Moreno-Razo JA, De Pablo JJ, Abbott NL. Single nanoparticle tracking reveals influence of chemical functionality of nanoparticles on local ordering of liquid crystals and nanoparticle diffusion coefficients. Nano Lett. 2009;9:2794–2801. doi:10.1021/nl901498d
  • Tomar V, Roberts TF, Abbott NL, Hernández-Ortiz JP, De Pablo JJ. Liquid crystal mediated interactions between nanoparticles in a nematic phase. Langmuir. 2012;28:6124–6131. doi:10.1021/la204119p
  • Ryzhkova AV, Muševič I. Particle size effects on nanocolloidal interactions in nematic liquid crystals. Phys Rev E. 2013;87:032501. doi:10.1103/PhysRevE.87.032501
  • Škarabot M, Muševič I. Direct observation of interaction of nanoparticles in a nematic liquid crystal. Soft Matter. 2010;6:5476–5481. doi:10.1039/c0sm00437e
  • Leadbetter AJ, Richardson RM, Colling CN. The structure of a number of nematogens. Le J Phys Colloq. 1975;36:C1–37–C1–43.
  • Gilroy JB, Gädt T, Whittell GR, Chabanne L, Mitchels JM, Richardson RM, Winnik MA, Manners I. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat Chem. 2010;2:566–570. doi:10.1038/nchem.664
  • Leach ESH, Hopkinson A, Franklin K, Van Duijneveldt JS. Nonaqueous suspensions of laponite and montmorillonite. Langmuir. 2005;21:3821–3830. doi:10.1021/la0503909
  • van der Kooij FM, Kassapidou K, Lekkerkerker HNW. Liquid crystal phase transitions in suspensions of polydisperse plate-like particles. Nature. 2000;406:868–871. doi:10.1038/35022535
  • Zamora-Ledezma C, Puech N, Zakri C, Grelet E, Moulton SE, Wallace GG, Gambhir S, Blanc C, Anglaret E, Poulin P. Liquid crystallinity and dimensions of surfactant-stabilized sheets of reduced graphene oxide. J Phys Chem Lett. 2012;3:2425–2430. doi:10.1021/jz3008479
  • Zhao Y, Thorkelsson K, Mastroianni AJ, Schilling T, Luther JM, Rancatore BJ, Matsunaga K, Jinnai H, Wu Y, Poulsen D, Fréchet JMJ, Alivisatos AP, Xu T. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat Mater. 2009;8:979–985. doi:10.1038/nmat2565
  • Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA. DNA-programmable nanoparticle crystallization. Nature. 2008;451:553–556. doi:10.1038/nature06508
  • Greasty R, Richardson R, Klein S, Cherns D, Thomas M, Pizzey C, Terrill N, Rochas C. Electro-induced orientational ordering of anisotropic pigment nanoparticles. Philos Trans R Soc A. 2013;371:20120257. doi:10.1098/rsta.2012.0257
  • Thomas MR, Klein S, Greasty RJ, Mann S, Perriman AW, Richardson RM. Nematic director-induced switching of assemblies of hexagonally packed gold nanorods. Adv Mater. 2012;24:4424–4429. doi:10.1002/adma.201201319
  • Kotlarchyk M, Chen S-H. Analysis of small angle neutron scattering spectra from polydisperse interacting colloids. J Chem Phys. 1983;79:2461. doi:10.1063/1.446055
  • Sheu EY. Polydispersity analysis of scattering data from self-assembled systems. Phys Rev A. 1992;45:2428–2438. doi:10.1103/PhysRevA.45.2428
  • Vutukuri HR, Demirörs AF, Peng B, Van Oostrum PDJ, Imhof A, Van Blaaderen A. Colloidal analogues of charged and uncharged polymer chains with tunable stiffness. Angew Chemie. 2012;124:11411–11415. doi:10.1002/ange.201202592
  • Pishnyak O, Shiyanovskii S, Lavrentovich O. Inelastic collisions and anisotropic aggregation of particles in a nematic collider driven by backflow. Phys Rev Lett. 2011;106:047801. doi:10.1103/PhysRevLett.106.047801
  • Ognysta U, Nych A, Nazarenko V, Škarabot M, Muševič I. Design of 2D binary colloidal crystals in a nematic liquid crystal. Langmuir. 2009;25:12092–12100. doi:10.1021/la901719t
  • Chiappisi L, Prévost S, Gradzielski M. Form factor of cylindrical superstructures composed of globular particles. J Appl Crystallogr. 2014;47:827–834. doi:10.1107/S1600576714005524
  • Chiappisi L, Prévost S, Grillo I, Gradzielski M. Chitosan/alkylethoxy carboxylates: a surprising variety of structures. Langmuir. 2014;30:1778–1787. doi:10.1021/la404718e
  • Kawaguchi T. Scattering curve and radius of gyration of a straight chain of identical spheres. J Appl Crystallogr. International Union of Crystallography. 2001;34:771–772. doi:10.1107/S0021889801014558
  • Jain N, Liu CK, Hawkett BS, Warr GG, Hamilton WA. Application of small-angle neutron scattering to the study of forces between magnetically chained monodisperse ferrofluid emulsion droplets. J Appl Crystallogr. 2014;47:41–52. doi:10.1107/S1600576713030045
  • Hosemann R, Bagchi SN. Direct analysis of diffraction by matter. Amsterdam: North-Holland Publishing; 1962.
  • Guinier A. X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. San Francisco (CA): W.H. Freeman and Co.; 1963. Chapter 9, Crystal imperfections destroying long range order; p. 295–305.
  • Hermans PH. Physics and chemistry of cellulose fibres. New York (NY): Elsevier; 1949.
  • Wood TA, Lintuvuori JS, Schofield AB, Marenduzzo D, Poon WCK. A self-quenched defect glass in a colloid-nematic liquid crystal composite. Science. 2011;334:79–83. doi:10.1126/science.1209997

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.