565
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Effect of alumina nanoparticles on dielectric permittivity, electrical conductivity, director relaxation frequency, threshold and switching voltages of a nematic liquid crystalline material

, &
Pages 1803-1810 | Received 16 Jul 2014, Accepted 29 Jul 2014, Published online: 27 Aug 2014

References

  • Dunmur D, Fukuda A, Luckhurst G. Physical properties of liquid crystals: nematics. London: INSPEC; 2001.
  • Collings PJ. Liquid crystals: natures delicate phase of matter. Princeton (NJ): Princeton University Press; 1990.
  • Oswald P, Pieranski P. Nematic and cholesteric liquid crystals: concepts and physical properties. Boca Raton (FL): CRC Press; 2005.
  • Lee WK, Choi JH, Na HJ, Lim JH, Han JM, Hwang JY, Seo DS. Low-power operation of vertically aligned liquid-crystal system via anatase-TiO2 nanoparticle dispersion. Opt Lett. 2009;34:3653–3655. doi:10.1364/OL.34.003653
  • Guzmán O, Abbott NL, De Pablo JJ. Quenched disorder in a liquid crystal biosensor: adsorbed nanoparticles at confining walls. J Chem Phys. 2005;122:184711. doi:10.1063/1.1896354
  • Woltman SJ, Crawford GP, Jay GD. Liquid crystals-frontiers in biomedical applications. Singapore: World Scientific Publishing Co. Pvt. Ltd.; 2007.
  • Lebovka NI, Lisetski LN, Nesterenko MI, Panikarskaya VD, Kasian NA, Minenko SS, Soskin MS. Anomalous selective reflection in cholesteryl oleyl carbonate – nematic 5CB mixtures and effects of their doping by single-walled carbon nanotubes. Liq Cryst. 2013;40:968–975. doi:10.1080/02678292.2013.786796
  • Dhar R, Pandey AS, Pandey MB, Kumar S, Dabrowski R. Optimization of the display parameters of a room temperature twisted nematic display material by doping single-wall carbon nanotubes. App Phys Exp. 2008;1:121501–121503. doi:10.1143/APEX.1.121501
  • Vardanyan KK, Sita DM, Walton RD, Gurfinkiel IS, Saidel WM. Liquid crystalline cyanobiphenyl homologues doped with gold nanoparticles. Liq Cryst. 2012;39:1083–1098. doi:10.1080/02678292.2012.696729
  • Vardanyan KK, Walton RD, Sita DM, Gurfinkiel IS, Saidel WM. Study of pentyl-cyanobiphenyl nematic doped with gold nanoparticles. Liq Cryst. 2012;39:595–605. doi:10.1080/02678292.2012.668567
  • Supreet S, Pratibha R, Kumar S, Raina KK. Effect of dispersion of gold nanoparticles on the optical and electrical properties of discotic liquid crystal. Liq Cryst. 2014;41:933–939. doi:10.1080/02678292.2014.893032
  • Chaudhary A, Malik P, Mehra R, Raina KK. Influence of ZnO nanoparticle concentration on electro-optic and dielectric properties of ferroelectric liquid crystal mixture. J Mol Liq. 2013;188:230–236. doi:10.1016/j.molliq.2013.09.020
  • Shivakumar U, Mirzaei J, Feng X, Sharma A, Moreira P, Hegmann T. Nanoparticles: complex and multifaceted additives for liquid crystals. Liq Cryst. 2011;38:1495–1514. doi:10.1080/02678292.2011.605477
  • Qi H, Kinkead B, Hegmann T. Unprecedented dual alignment mode and Freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters. Adv Funct Mater. 2008;18:212–221. doi:10.1002/adfm.200701327
  • Barmatov EB, Pebalk DA, Barmatova MV. Influence of silver nanoparticles on the order parameter of liquid crystalline polymers. Liq Cryst. 2006;33:1059–1063. doi:10.1080/02678290600898484
  • Singh UB, Dhar R, Dabrowski R, Pandey MB. Influence of low concentration silver nanoparticles on the electrical and electro-optical parameters of nematic liquid crystals. Liq Cryst. 2013;40:774–782. doi:10.1080/02678292.2013.783136
  • Lee HM, Chung HK, Park HG, Jeong HC, Han JJ, Cho MJ, Lee JW, Seo DS. Residual DC voltage-free behaviour of liquid crystal system with nickel nanoparticle dispersion. Liq Cryst. 2014;41:247–251. doi:10.1080/02678292.2013.851291
  • Lopatina LM, Selinger JV. Theory of ferroelectric nanoparticles in nematic liquid crystals. Phys Rev Lett. 2009;102:197802. doi:10.1103/PhysRevLett.102.197802
  • Dierking I, Scalia G, Morales P. Liquid crystal–carbon nanotube dispersions. J Appl Phys. 2005;97:044309. doi:10.1063/1.1850606
  • Jayathilaka PARD, Dissanayake MAKL, Albinsson I, Mellander BE. Effect of nanoporous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system. Electrochim Acta. 2002;47:3257–3268. doi:10.1016/S0013-4686(02)00243-8
  • Jeon N, Kim D. Dye-sensitized solar cells assembled with composite gel polymer electrolytes containing nanosized Al2O3 particles. J Nanosci Nanotech. 2013;13:7955–7958. doi:10.1166/jnn.2013.8123
  • Joshi T, Prakash J, Kumar A, Gangwar J, Srivastava AK, Singh S, Biradar AM. Alumina nanoparticles find an application to reduce the ionic effects of ferroelectric liquid crystal. J Phys D: Appl Phys. 2011;44:315404–315407. doi:10.1088/0022-3727/44/31/315404
  • Grigoriadis C, Duran H, Steinhart M, Kappl M, Butt H, Floudas G. Suppression of phase transitions in a confined rodlike liquid crystal. ACS Nano. 2011;5:9208–9215. doi:10.1021/nn203448c
  • Pandey MB, Dhar R, Dabrowski R. Characteristics of the collective dielectric relaxation mode of the incommensurate SmC*α phase. J Phys: Condens Matter. 2008;20:115207.
  • Cole KS, Cole RH. Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys. 1941;9:341–351. doi:10.1063/1.1750906
  • Dhar R. An impedance model to improve the higher frequency limit of electrical measurements on the capacitor cell made from electrodes of finite resistances. Indian J Pure Appl Phys. 2004;42:56–61.
  • Dhar R, Verma R, Rath MC, Sarkar SK, Wadhawan VK, Dabrowski R, Tykarska M. Tuning of the electrical parameters of a twisted-nematic display material by using electron beam irradiation. Appl Phys Lett. 2008;92:014108. doi:10.1063/1.2829882
  • Srivastava SL, Dhar R. Characteristic time of ionic conductance and electrode polarization capacitance in some organic liquids by low frequency dielectric spectroscopy. Indian J Pure Appl Phys. 1991;29:745–751.
  • Gorkunov MV, Osipov MA. Mean field theory of a nematic liquid crystal doped with anisotropic nanoparticles. Soft Matter. 2011;7:4348–4356. doi:10.1039/c0sm01398f
  • Prasad SK, Sandhya KL, Nair GN, Hiremath US, Yelamaggad CV, Sampath S. Electrical conductivity and dielectric constant measurements of liquid crystal–gold nanoparticle composites. Liq Cryst. 2006;33:1121–1125. doi:10.1080/02678290600930980
  • Prasad SK, Kumar MV, Shilpa T, Yelamaggad CV. Enhancement of electrical conductivity, dielectric anisotropy and director relaxation frequency in composites of gold nanoparticle and a weakly polar nematic liquid crystal. RSC Adv. 2014;4:4453–4462. doi:10.1039/c3ra45761c
  • Maier W, Meier G. A simple theory of the dielectric are some homogeneous criteria oriented liquid crystal phases of nematic type. Z Naturforsch. 1961;16A:262–267.
  • Pandey AS, Dhar R, Kumar S, Dabrowski R. Enhancement of the display parameters of 4′-pentyl-4-cyanobiphenyl due to the dispersion of functionalised gold nanoparticles. Liq Cryst. 2011;38:115–120. doi:10.1080/02678292.2010.530695
  • Edwards DMF, Madden PA. A molecular theory of the dielectric permittivity of a nematic liquid crystal. Mol Phys. 1983;48:471–493. doi:10.1080/00268978300100341
  • Martin AJ, Meier G, Saupe A. Extended Debye theory for dielectric relaxations in nematic liquid crystals. Symp Faraday Soc. 1971;5:119–133. doi:10.1039/sf9710500119
  • Vardanyan KK, Sita DM, Walton RD, Saidel WM, Jones KM. Cyanobiphenyl liquid crystal composites with gold nanoparticles. RSC Adv. 2013;3:259–273. doi:10.1039/c2ra21220j
  • Reznikov Y, Buchnev O, Tereshchenko O, Reshetnyak V, Glushchenko A, West J. Ferroelectric nematic suspension. Appl Phys Lett. 2003;82:1917. doi:10.1063/1.1560871
  • Kim GH, Enomoto S, Kanazawa A, Shiono T, Ikeda T, Park LS. Optical switching of nematic liquid crystal by means of photo responsive polyimides as an alignment layer. Appl Phys Lett. 1999;75:3458–3460. doi:10.1063/1.125295
  • Shiraishi Y, Toshima N, Maeda K, Yoshikawa H, Xu J, Kobayashi S. Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles. Appl Phys Lett. 2002;81:2845. doi:10.1063/1.1511282
  • Takatoh K, Hasegawa M, Koden M, Itoh N, Hasegawa R, Sakamoto M. Alignment technologies and applications of liquid crystal devices. Oxon: Taylor & Francis; 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.