577
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Photoluminescent nematic liquid crystalline elastomer actuators

, , , &
Pages 1821-1830 | Received 09 Jul 2014, Accepted 30 Jul 2014, Published online: 27 Aug 2014

References

  • Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9:101–113. doi:10.1038/nmat2614
  • Li MH, Keller P. Artificial muscles based on liquid crystal elastomers. Phil Trans R Soc A. 2006;364:2763–2777. doi:10.1098/rsta.2006.1853
  • Warner MT, Terentjev EM. Liquid crystal elastomers. Oxford: Oxford University Press; 2003.
  • Wei RB, He YN, Wang XG, Keller P. Nematic liquid crystalline elastomer grating and microwire fabricated by micro-molding in capillaries. Macromol Rapid Commun. 2013;34:330–334. doi:10.1002/marc.201200667
  • Brömmel F, Kramer D, Finkelmann H. Preparation of liquid crystalline elastomers. Adv Polym Sci. 2012;250:1–48.
  • Ohm C, Brehmer M, Zentel R. Applications of liquid crystalline elastomers. Adv Polym Sci. 2012;250:49–94. doi:10.1007/12_2011_164
  • Ikeda T, Mamiya J, Yu YL. Photomechanics of liquid-crystalline elastomers and other polymers. Angew Chem Int Edit. 2007;46:506–528. doi:10.1002/anie.200602372
  • Yang H, Ye G, Wang XG, Keller P. Micron-sized liquid crystalline elastomer actuators. Soft Matter. 2011;7:815–823. doi:10.1039/c0sm00734j
  • Lee WE, Jin YJ, Park LS, Kwak G. Fluorescent actuator based on microporous conjugated polymer with intramolecular stack structure. Adv Mater. 2012;24:5604–5609. doi:10.1002/adma.201201967
  • Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M. Design of fluorescent materials for chemical sensing. Chem Soc Rev. 2007;36:993–1017. doi:10.1039/b609548h
  • Schaferling M. The art of fluorescence imaging with chemical sensors. Angew Chem Int Edit. 2012;51:3532–3554. doi:10.1002/anie.201105459
  • Yamane S, Sagara Y, Mutai T, Araki K, Kato T. Mechanochromic luminescent liquid crystals based on a bianthryl moiety. J Mater Chem C. 2013;1:2648–2656. doi:10.1039/c3tc00861d
  • Urban MW. Handbook of stimuli responsive materials. Weinheim: Wiley-VCH; 2011.
  • Sato M, Matsuoka Y, Yamaguchi I. Bluish-violet light-emitting liquid crystalline hyperbranched polymers using three trisalcohol B3 monomers: preparation, characterisation and structure-property relationship. Liq Cryst. 2012;39:1071–1081. doi:10.1080/02678292.2012.696731
  • Zabulica A, Perju E, Bruma M, Marin L. Novel luminescent liquid crystalline polyazomethines. Synthesis and study of thermotropic and photoluminescent properties. Liq Cryst. 2014;41:252–262. doi:10.1080/02678292.2013.852258
  • Finkelmann H, Kock HJ, Rehage G. Liquid crystalline elastomers-A new type of liquid crystalline material. Makromol Chem Rapid Commun. 1981;2:317–322. doi:10.1002/marc.1981.030020413
  • Krause S, Dersch R, Wendorff JH, Finkelmann H. Photocrosslinkable liquid crystal main-chain polymers: thin films and electrospinning. Macromol Rapid Commun. 2007;28:2062–2068. doi:10.1002/marc.200700460
  • Buguin A, Li MH, Silberzan P, Ladoux B, Keller P. Micro-actuators: when artificial muscles made of nematic liquid crystal elastomers meet soft lithography. J Am Chem Soc. 2006;128:1088–1089. doi:10.1021/ja0575070
  • Thomsen DL, Keller P, Naciri J, Pink R, Jeon H, Shenoy D, Ratna BR. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules. 2001;34:5868–5875. doi:10.1021/ma001639q
  • Yang H, Buguin A, Taulemesse JM, Kaneko K, Mery S, Bergeret A, Keller P. Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions. J Am Chem Soc. 2009;131:15000–15004. doi:10.1021/ja905363f
  • Ohm C, Kapernaum N, Nonnenmacher D, Giesselmann F, Serra C, Zentel R. Microfluidic synthesis of highly shape-anisotropic particles from liquid crystalline elastomers with defined director field configurations. J Am Chem Soc. 2011;133:5305–5311. doi:10.1021/ja1095254
  • Ohm C, Serra C, Zentel R. A continuous flow synthesis of micrometer-sized actuators from liquid crystalline elastomers. Adv Mater. 2009;21:4859–4862. doi:10.1002/adma.200901522
  • Wu ZL, Buguin A, Yang H, Taulemesse JM, Le Moigne N, Bergeret A, Wang XG, Keller P. Microstructured nematic liquid crystalline elastomer surfaces with switchable wetting properties. Adv Funct Mater. 2013;23:3070–3076. doi:10.1002/adfm.201203291
  • Wu ZL, Wei RB, Buguin A, Taulemesse JM, Le Moigne N, Bergeret A, Wang XG, Keller P. Stimuli-responsive topological change of microstructured surfaces and the resultant variations of wetting properties. ACS Appl Mater Interfaces. 2013;5:7485–7491. doi:10.1021/am4017957
  • Beyer P, Zentel R. Photoswitchable smectic liquid-crystalline elastomers. Macromol Rapid Commun. 2005;26:874–879. doi:10.1002/marc.200500093
  • Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M. Fast liquid-crystal elastomer swims into the dark. Nat Mater. 2004;3:307–310. doi:10.1038/nmat1118
  • Ikeda T, Nakano M, Yu YL, Tsutsumi O, Kanazawa A. Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv Mater. 2003;15:201–205. doi:10.1002/adma.200390045
  • Kondo M, Yu YL, Ikeda T. How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid-crystalline elastomers? Angew Chem Int Edit. 2006;45:1378–1382. doi:10.1002/anie.200503684
  • Yu YL, Nakano M, Ikeda T. Directed bending of a polymer film by light- Miniaturizing a simple photomechanical system could expand its range of applications. Nature. 2003;425:145. doi:10.1038/425145a
  • Deng W, Li MH, Wang XG, Keller P. Light-responsive wires from side-on liquid crystalline azo polymers. Liq Cryst. 2009;36:1023–1029. doi:10.1080/02678290902759251
  • Courty S, Mine J, Tajbakhsh AR, Terentjev EM. Nematic elastomers with aligned carbon nanotubes: new electromechanical actuators. Europhys Lett. 2003;64:654–660. doi:10.1209/epl/i2003-00277-9
  • Huang C, Zhang QM, Jakli A. Nematic anisotropic liquid-crystal gels—Self-assembled nanocomposites with high electromechanical response. Adv Funct Mater. 2003;13:525–529. doi:10.1002/adfm.200304322
  • Urayama K, Honda S, Takigawa T. Electrooptical effects with anisotropic deformation in nematic gels. Macromolecules. 2005;38:3574–3576. doi:10.1021/ma0503054
  • Naciri J, Srinivasan A, Jeon H, Nikolov N, Keller P, Ratna BR. Nematic elastomer fiber actuator. Macromolecules. 2003;36:8499–8505. doi:10.1021/ma034921g
  • Shenoy DK, Thomsen DL, Srinivasan A, Keller P, Ratna BR. Carbon coated liquid crystal elastomer film for artificial muscle applications. Sensors Actuat A-Phys. 2002;96:184–188. doi:10.1016/S0924-4247(01)00793-2
  • Li MH, Keller P, Yang JY, Albouy PA. An artificial muscle with lamellar structure based on a nematic triblock copolymer. Adv Mater. 2004;16:1922–1925. doi:10.1002/adma.200400658
  • Chen ML, Xing X, Liu Z, Zhu YT, Liu H, Yu YL, Cheng F. Photodeformable polymer material: towards light-driven micropump applications. Appl Phys A-Mater. 2010;100:39–43. doi:10.1007/s00339-010-5853-3
  • Chen ML, Huang HT, Zhu YT, Liu Z, Xing X, Cheng FT, Yu YL. Photodeformable CLCP material: study on photo-activated microvalve applications. Applied Physics A. 2011;102:667–672. doi:10.1007/s00339-010-6103-4
  • Fleischman EK, Liang HL, Kapernaum N, Giesselmann F, Lagerwall J, Zentel R. One-piece micropumps from liquid crystalline core-shell particles. Nat Commun. 2012;3:1178. doi:10.1038/ncomms2193
  • Serak S, Tabiryan N, Vergara R, White TJ, Vaia RA, Bunning TJ. Liquid crystalline polymer cantilever oscillators fueled by light. Soft Matter. 2010;6:779–783. doi:10.1039/b916831a
  • Bao SP, Li JH, Lee KI, Shao SJ, Hao JH, Fei B, Xin JH. Reversible mechanochromism of a luminescent elastomer. ACS Appl Mater Interfaces. 2013;5:4625–4631. doi:10.1021/am4013648
  • Ciardelli F, Ruggeri G, Pucci A. Dye-containing polymers: methods for preparation of mechanochromic materials. Chem Soc Rev. 2013;42:857–870. doi:10.1039/c2cs35414d
  • Pucci A, Ruggeri G. Mechanochromic polymer blends. J Mater Chem. 2011;21:8282–8291. doi:10.1039/c0jm03653f
  • Roberts DRT, Holder SJ. Mechanochromic systems for the detection of stress, strain and deformation in polymeric materials. J Mater Chem. 2011;21:8256–8268. doi:10.1039/c0jm04237d
  • Kunzelman J, Crenshaw BR, Kinami M, Weder C. Self-assembly and dispersion of chromogenic molecules: a versatile and general approach for self-assessing polymers. Macromol Rapid Commun. 2006;27:1981–1987. doi:10.1002/marc.200600642
  • Wang CC, Gao Y, Shreve AP, Zhong C, Wang L, Mudalige K, Wang HL, Cotlet M. Thermochromism of a poly(phenylene vinylene): untangling the roles of polymer aggregate and chain conformation. J Phys Chem B. 2009;113:16110–16117. doi:10.1021/jp906645d
  • Kunzelman J, Chung T, Mather PT, Weder C. Shape memory polymers with built-in threshold temperature sensors. J Mater Chem. 2008;18:1082–1086. doi:10.1039/b718445j
  • Beck JB, Rowan SJ. Multistimuli, multiresponsive metallo-supramolecular polymers. J Am Chem Soc. 2003;125:13922–13923. doi:10.1021/ja038521k
  • Ando M. Recent advances in optochemical sensors for the detection of H2, O2, O3, CO, CO2 and H2O in air. TrAC Trends Anal Chem. 2006;25:937–948. doi:10.1016/j.trac.2006.06.009
  • Kondratowicz B, Narayanaswamy R, Persaud KC. An investigation into the use of electrochromic polymers in optical fibre gas sensors. Sens Actuator B-Chem. 2001;74:138–144. doi:10.1016/S0925-4005(00)00723-1
  • Wei RB, He YN, Wang XG, Keller P. Photoluminescent nematic liquid crystalline elastomer with a thermomechanical emission variation function. Macromol Rapid Commun. 2014. doi:10.1002/marc.201400264
  • Wei RB, Zhou LY, He YN, Wang XG, Keller P. Effect of molecular parameters on thermomechanical behavior of side-on nematic liquid crystal elastomers. Polymer. 2013;54:5321–5329. doi:10.1016/j.polymer.2013.07.057
  • Matsui J, Mitsuishi M, Miyashita T. A study on fluorescence behavior of pyrene at the interface of polymer Langmuir−Blodgett films. J Phys Chem B. 2002;106:2468–2473. doi:10.1021/jp012381o
  • Iyer PK, Beck JB, Weder C, Rowan SJ. Synthesis and optical properties of metallo-supramolecular polymers. Chem Commun. 2005;319–321. doi:10.1039/b410734a
  • Parker CA, Hatchard CG. Delayed fluorescence of pyrene in ethanol. Trans Faraday Soc. 1963;59:284–295. doi:10.1039/tf9635900284
  • Kalyanasundaram K, Thomas JK. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc. 1977;99:2039–2044. doi:10.1021/ja00449a004
  • Duhamel J. New insights in the study of pyrene excimer fluorescence to characterize macromolecules and their supramolecular assemblies in solution. Langmuir. 2012;28:6527–6538. doi:10.1021/la2047646
  • Remuiňán MJ, Román H, Alonso MT, Rodríguez-Ubis JC. Synthesis and luminiscence properties of europium(III) and terbium(III) complexes with polyacid chelates derived from 2,6-bis(N-pyrazolyl)pyridine. J Chem Soc Perkin Trans. 1993;2:1099–1102. doi:10.1039/p29930001099

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.