226
Views
8
CrossRef citations to date
0
Altmetric
Invited Article

Renewed focus on the small temperature change of smectic layer spacing in ferroelectric and antiferroelectric LCs

, , , &
Pages 864-876 | Received 25 Oct 2014, Published online: 10 Apr 2015

References

  • Diele S, Brand P, Sackmann H. X-ray diffraction and polymorphism of smectic liquid crystals 1. A-, B-, and C-modifications. Mol Cryst Liq Cryst. 1972;16:105. doi:10.1080/15421407208083583.
  • Bartolino R, Doucet J, Durand G. Molecular tilt in smectic-C phase. Ann Phys. 1978;3:389.
  • de Vries A. X-ray photographic studies of liquid crystals 11. Apparent Molecular length and thickness in three phases of ethyl-p-ethoxy benzal- p-amino benzoate. Mol Cryst Liq Cryst. 1970;11:361. doi:10.1080/15421407008083528.
  • Lagerwall JPF, Giesselmann F. Current topics in smectic liquid crystal research. Chem Phys Chem. 2006;7:20. doi:10.1002/cphc.200500472.
  • de Vries A. Experimental evidence concerning two different kinds of smectic C to smectic A transitions. Mol Cryst Liq Cryst. 1977;41(letters):27. doi:10.1080/01406567708071949.
  • de Vries A, Ekachai A, Spielberg N. Why the molecules are tilted in all smectic A phases, and how the layer thickness can be used to measure orientational disorder. Mol Cryst Liq Cryst. 1979;49(Letters):143. doi:10.1080/00268947908070345.
  • de Vries A. Implications of the diffuse-cone model for smectic A phase and C-phase and AC Phase Transitions. Mol Cryst Liq Cryst. 1979a;49(Letters):179. doi:10.1080/00268947908070457.
  • de Vries A. The description of the smectic A and C phases and the smectic A–C phase transition of TCOOB with a diffuse cone model. J Chem Phys. 1979b;71:25. doi:10.1063/1.438123.
  • de Gennes PG, Prost J. The physics of liquid crystals. 2nd ed. Clarendon Press, Oxford; 1993.
  • Takanishi Y, Ikeda A, Takezoe H, Fukuda A. Higher smectic-layer order parameters determined by X-ray diffraction and the effects of antiferroelectricity. Phys Rev E. 1995;51:400. doi:10.1103/PhysRevE.51.400.
  • Takanishi Y, Miyachi K, Yoshida S, Jin B, Yin H, Ishikawa K, Takezoe H, Fukuda A. Stability of antiferroelectricity and molecular reorientation in the hexatic smectic I*A phase as studied by X-ray diffraction and NMR spectroscopy. J Mater Chem. 1998;8:1133. doi:10.1039/a707920f.
  • Panarin YP, Panov V, Kalinovskaya OE, Vij JK. Observation of a possible random ferroelectric liquid crystal phase. J Mater Chem. 1999;9:2967. doi:10.1039/a906689f.
  • Takigawa K, Yamamoto T, Yamamoto N, Yamada Y. Uniform alignment of antiferroelectric liquid crystals. Abst Jpn Liq Cryst Conf. 1996; 279.
  • Takigawa K, Yamamoto T, Yamada Y, Aihara Y, Hashimoto S, Suzuki Y. US Patent: smectic liquid crystal composition and liquid crystal display. Jpn Pat Gaz. 1998; H10–53765.
  • Cabib D, Benguigui L. The smectic C phase of liquid crystals. J Phys (France). 1977;38:419. doi:10.1051/jphys:01977003804041900.
  • Grinstein G, Pelcovits RA. Smectic A – C transition in three dimensions. Phys Rev A. 1982;26:2196. doi:10.1103/PhysRevA.26.2196.
  • Sirota EB. A model for a generalized liquid crystal phase. J Phys (France). 1988;49:1443. doi:10.1051/jphys:019880049080144300.
  • Korlacki R, Fukuda A, Vij JK. Modulated Hexatic-B* with giant electroclinic effect rather than anticlinic Hexatic-IA* – a novel mechanism for stabilizing antiferroelectricity below Smectic-CA. Europhys Lett. 2007;77:36004. doi:10.1209/0295-5075/77/36004.
  • Matsumoto T, Fukuda A, Johno M, Motoyama Y, Yui T, Seomun SS, Yamashita M. A novel property caused by frustration between ferroelectricity and antiferroelectricity and its application to liquid crystal displays–frustoelectricity and V-shaped switching. J Mater Chem. 1999;9:2051. doi:10.1039/a903273h.
  • Hayashi N, Kato T. Investigations of orientational order for an antiferroelectric liquid crystal by polarized Raman scattering measurements. Phys Rev E. 2001;63:021706. doi:10.1103/PhysRevE.63.021706.
  • Hayashi N, Kato T, Aoki T, Ando T, Fukuda A, Seomun SS. Orientational distributions in smectic liquid crystals showing V-shaped switching investigated by polarized Raman scattering. Phys Rev E. 2002;65:041714. doi:10.1103/PhysRevE.65.041714.
  • Hayashi N, Kato T, Fukuda A, Vij JK, Panarin YP, Naciri J, Shashidhar R, Kawada S, Kondoh S. Evidence for de Vries structure in a smectic liquid crystal by polarized Raman scattering. Phys Rev E. 2005;71:041705. doi:10.1103/PhysRevE.71.041705.
  • Kim KH, Miyachi K, Ishikawa K, Takezoe H, Fukuda A. Molecular orientation and switching behaviour in antiferroelectric liquid crystals studied by polarized Raman scattering. Jpn J Appl Phys Pt 1. 1994;33:5850. doi:10.1143/JJAP.33.5850.
  • Hayashi N, Kocot A, Linehan M, Fukuda A, Vij JK, Heppke G, Naciri J, Kawada S, Kondoh S. Experimental demonstration, using polarized Raman and infrared spectroscopy, that both conventional and de Vries smectic-A phases may exist in smectic liquid crystals with a first-order A–C* transition. Phys Rev E. 2006;74:051706. doi:10.1103/PhysRevE.74.051706.
  • Spector MS, Heiney PA, Naciri J, Weslowski BT, Holt DB, Shashidhar R. Electroclinic liquid crystals with large induced tilt angle and small layer contraction. Phys Rev E. 2000;61:1579. doi:10.1103/PhysRevE.61.1579.
  • Collings PJ, Ratna BR, Shashidhar R. Order parameter measurements of dichroic dyes dissolved in smectic liquid crystals that tilt without layer contraction. Phys Rev E. 2003;67:021705. doi:10.1103/PhysRevE.67.021705.
  • Panarina OE, Panarin YP, Vij JK, Spector MS, Shashidhar R. Comparison of the characteristics of the chiral analog of de Vries type of smectic A* phase. Phys Rev E. 2003;67:051709. doi:10.1103/PhysRevE.67.051709.
  • Meyer RB, Pelcovits RA. Electroclinic effect and modulated phases in smectic liquid crystals. Phys Rev E. 2002;65:061704. doi:10.1103/PhysRevE.65.061704.
  • Rudquist P, Lagerwall S, Osipov M. Invited talk: sugarloaf-like molecular and volcano-like core orientational distributions in de Vries smectic A liquid crystals. abstract book. Vij JK, Panarina OE, editors. Dublin: ILCS; 2014.
  • Agra-Kooijman DM, Yoon HG, Dey S, Kumar S. Origin of weak layer contraction in de Vries smectic liquid crystals. Phys Rev E. 2014;89:032506. doi:10.1103/PhysRevE.89.032506.
  • Yoon H, Agra-Kooijman DM, Ayub K, Lemieux RP, Kumar S. Direct observation of diffuse cone behavior in de Vries smectic-A and C phases of organosiloxane. Phys Rev Lett. 2011;106:087801. doi:10.1103/PhysRevLett.106.087801.
  • Naciri J, Ruth J, Crawford G, Shashidhar R, Ratna BR. Novel ferroelectric and electroclinic organosiloxane liquid crystals. Chem Mater. 1995;7:1397. doi:10.1021/cm00055a019.
  • Keller EN, Nachaliel E, Davidov D. Evidence for the Zig Zag model of the smectic-C phase in the liquid crystal 4′-buthoxyphenylester 4-decyloxybenzoic acid (4OP10OB): a high-resolution x-ray study. Phys Rev A. 1986;34:4363. doi:10.1103/PhysRevA.34.4363.
  • Nakai T, Miyajima S, Takanishi Y, Yoshida S, Fukuda A. High-resolution 13C NMR study of an antiferroelectric liquid crystal: verification of the Bent Chain structure. J Phys Chem B. 1999;103:406. doi:10.1021/jp9829952.
  • Jin B, Ling Z, Takanishi Y, Ishikawa K, Takezoe H, Fukuda A, Kakimoto M, Kitazume T. Obliquely projecting chiral alkyl chains and their precession around the long core axes in the smectic-A phase of an antiferroelectric liquid crystal. Phys Rev E. 1996;53:R4295. doi:10.1103/PhysRevE.53.R4295.
  • Grigoras S, Lane TH. Ab initio calculations on the effect of polarization functions on disiloxane. J Comput Chem. 1987;8:84. doi:10.1002/jcc.540080111.
  • Grigoras S, Lane TH. Molecular mechanics parameters for organosilicon compounds calculated from ab initio computations. J Comput Chem. 1988;9:25. doi:10.1002/jcc.540090105.
  • Budai J, Pindak R, Davey SC, Goodby JW. A structural investigation of the liquid crystal phases of 4-(2′-methylbutyl)phenyl 4′-n-octylbiphenyl-4-carboxylate. J Phys (France). 1984;45:L1053. doi:10.1051/jphyslet:0198400450210105300.
  • Rychetsky I, Glogarova M, Novotna V. Competition between the chiral smectic-C* and hexatic phases. Phys Rev E. 2003;67:021704. doi:10.1103/PhysRevE.67.021704.
  • Kim KH, Takanishi Y, Ishikawa K, Takezoe H, Fukuda A. Phase transitions and conformational changes in an antiferroelectric liquid crystal 4-(1-methylheptyloxycarbonyl)phenyl 4′-octyloxybiphenyl-4-carboxylate (MHPOBC). Liq Cryst. 1994b;16:185. doi:10.1080/02678299408029146.
  • Takanishi Y, Takezoe H, Fukuda A. Hexatic antiferroelectric SmIA* phase in MHPOCBC. Ferroelectrics. 1993;147:135. doi:10.1080/00150199308217188.
  • Korlacki R, Fukuda A, Vij JK, Kocot A, Gortz V, Hird M, Goodby JW. Self-assembly of biaxial ordering and molecular tilt angle of chiral smectic liquid crystals in homeotropically aligned cells investigated using infrared spectroscopy. Phys Rev E. 2005;72:041704. doi:10.1103/PhysRevE.72.041704.
  • Neundorf M, Takanishi Y, Ishikawa K, Takezoe H, Fukuda A, Saito S, Murashiro K, Inukai T, Demus D. Novel type of antiferroelectricity in the hexatic smectic IA* phase. J Mater Chem. 1995;5:2221. doi:10.1039/jm9950502221.
  • Seomun SS, Gouda T, Takanishi Y, Ishikawa K, Takezoe H, Fukuda A. Bulk optical properties in binary mixtures of antiferroelectric liquid crystal compounds showing V-shaped switching. Liq Cryst. 1999;26:151. doi:10.1080/026782999205281.
  • Seomun SS, Takanishi Y, Ishikawa K, Takezoe H, Fukuda A, Tanaka C, Fujiyama T, Maruyama T, Nishiyama S. Thresholdless switching in homogeneous cells and antiferroelectric conoscopic figures in free-standing films as observed in binary smectic C*-like mixture. Mol Cryst Liq Cryst. 1997;303:181. doi:10.1080/10587259708039423.
  • Ouchi Y, Uemura T, Takezoe H, Fukuda A. Molecular reorientational process in chiral smectic I liquid crystal. Jpn J Appl Phys. 1985;Suppl-24-2:893. doi:10.7567/JJAPS.24S2.893.
  • Yamawaki M, Yamada Y, Yamamoto N, Mori K, Hayashi H, Suzuki Y, Negi YS, Hagiwara T, Kawamura I, Orihara H, Ishibashi Y. Electro-optical properties of fluorine-containing ferroelectric liquid crystal cells. Jpn Display. 1989;26.
  • Takanishi Y, Ouchi Y, Takezoe H, Fukuda A, Mochizuki A, Nakatsuka M. Spontaneous formation of quasi-bookshelf layer structure in new ferroelectric liquid crystals derived from a naphthalene ring. Jpn J Appl Phys. 1990;29:L984. doi:10.1143/JJAP.29.L984.
  • Inui S, Kawano S, Saito M, Iwane H, Takanishi Y, Hiraoka K, Ouchi Y, Takezoe H, Fukuda A. First order paraelectric-antiferroelectric phase transition in chiral liquid crystal of a fluorine containing phenyl pyrimidine derivative. Jpn J Appl Phys. 1990;29:L987. doi:10.1143/JJAP.29.L987.
  • Takanishi Y, Ouchi Y, Takezoe H, Fukuda A, Mochizuki A, Nakatsuka M. Spontaneous formation of quasi-bookshelf layer structure in new ferroelectric liquid crystals derived from a naphthalene ring [II]. Mol Cryst Liq Cryst. 1991;199:111. doi:10.1080/00268949108030922.
  • Takezoe H, Fukuda A, Ikeda A, Takanishi Y, Umemoto T, Watanabe J, Iwane H, Hara M, Itoh K. On the appearance of an antiferroelectric phase. Ferroelectrics. 1991;122:167. doi:10.1080/00150199108226038.
  • Ikeda A, Takanishi Y, Takezoe H, Fukuda A. Study on molecular dimerization inducing the antiferroelectric liquid crystal phase by measuring the smectic layer thickness in various compounds. Jpn J Appl Phys Pt 2. 1993;32:L97. doi:10.1143/JJAP.32.L97.
  • Ouchi Y, Yoshioka Y, Ishii H, Seki K, Kitamura M, Noyori R, Takanishi Y, Nishiyama I. Effect of the terminal branching structure of some liquid-crystalline biphenyl carbonylates on the stability of antiferroelectric phase. J Mater Chem. 1995;5:2297. doi:10.1039/jm9950502297.
  • Mills JT, Gleeson HF, Goodby JW, Hird M, Seed A, Styring P. X-ray and optical studies of the tilted phases of materials exhibiting antiferroelectric, ferrielectric and ferroelectric mesophases. J Mater Chem. 1998;8:2385. doi:10.1039/a805611k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.