428
Views
6
CrossRef citations to date
0
Altmetric
Articles

Dye-sensitised solar cells with iodine-free discotic electrolytes

, , &
Pages 1815-1822 | Received 30 Jul 2015, Accepted 22 Sep 2015, Published online: 15 Nov 2015

References

  • O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353:737–740. DOI:10.1038/353737a0.
  • Chen C-Y, Wang M, Li J-Y, et al. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano. 2009;3:3103–3109. DOI:10.1021/nn900756s.
  • Yu Q, Wang Y, Yi Z, et al. High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states. ACS Nano. 2010;4:6032–6038.
  • Zeng W, Cao Y, Bai Y, et al. Efficient dye- sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem Mater. 2010;22:1915–1925. DOI:10.1021/cm9036988.
  • Yella A, Lee H-W, Tsao HN, et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science. 2011;334:629–634. DOI:10.1126/science.1209688.
  • Mathew S, Yella A, Gao P, et al. Dye-sensitized solar cells with 13 % efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem. 2014;6:242–247. DOI:10.1038/nchem.1861.
  • Gregg BA, Pichot F, Ferrere S, et al. Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. J Phys Chem B. 2001;105:1422–1429. DOI:10.1021/jp003000u.
  • Yanagida S, Yu Y, Manseki K. Iodine/iodide-free dye-sensitized solar cells. Acc Chem Res. 2009;42:1827–1838. DOI:10.1021/ar900069p.
  • Nusbaumer H, Moser J-E, Zakeeruddin SM, et al. CoII (dbbip)22+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photo voltaic cells. J Phys Chem B. 2001;105:10461–10464. DOI:10.1021/jp012075a.
  • Sapp SA, Elliott CM, Contado C, et al. Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. J Am Chem Soc. 2002;124:11215–11222. DOI:10.1021/ja027355y.
  • Hattori S, Wada Y, Yanagida S, et al. Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells. J Am Chem Soc. 2005;127:9648–9654. DOI:10.1021/ja0506814.
  • Ohta K, Hatsusaka K, Sugibayashi M, et al. Discotic liquid crystalline semiconductors. Mol Cryst Liq Cryst. 2003;397:25–45. DOI:10.1080/714965592.
  • Kumar S. Self-organization of disc-like molecules: chemical aspects. Chem Soc Rev. 2006;35:83–109. DOI:10.1039/B506619K.
  • Laschat S, Baro A, Steinke N, et al. Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew Chem Int Ed. 2007;46:4832–4887. DOI:10.1002/(ISSN)1521-3773.
  • Wu J, Pisula W, Müllen K. Graphenes as potential material for electronics. Chem Rev. 2007;107:718–747. DOI:10.1021/cr068010r.
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36:1902–1929. DOI:10.1039/b417320c.
  • Bushby RJ, Kawata K. Liquid crystals that affected the world: discotic liquid crystals. Liq Cryst. 2011;38:1415–1426. DOI:10.1080/02678292.2011.603262.
  • Bisoyi HK, Kumar S. Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem Soc Rev. 2011;40:306–319. DOI:10.1039/B901793N.
  • Li Q. Nanoscience with liquid crystals. Cham: Springer; 2014.
  • Kumar S. Discotic liquid crystal-nanoparticle hybrid systems. NPG Asia Mater. 2014;6:e82. DOI:10.1038/am.2013.75.
  • Balagurusamy VSK, Prasad S, Chandrasekhar S, et al. Quasi-one dimensional electrical conductivity and thermoelectric power studies on a discotic liquid crystal. Pramana. 1999;53:3–11. DOI:10.1007/s12043-999-0136-2.
  • Gregg BA, Fox MA, Bard AJ. Photovoltaic effect in symmetrical cells of a liquid crystal porphyrin. J Phys Chem. 1990;94:1586–1598. DOI:10.1021/j100367a068.
  • Li L, Kang S-W, Harden J, et al. Nature-inspired light-harvesting liquid crystalline porphyrins for organic photovoltaics. Liq Cryst. 2008;35:233–239. DOI:10.1080/02678290701806584.
  • Petritsch K, Friend RH, Lux A, et al. Liquid crystalline phthalocyanines in organic solar cells. Synth Met. 1999;102:1776–1777. DOI:10.1016/S0379-6779(98)01035-2.
  • Levitsky IA, Euler WB, Tokranova N, et al. Hybrid solar cells based on porous Si and copper phthalocyanine derivatives. J Appl Phys Lett. 2004;85:6245–6247. DOI:10.1063/1.1839280.
  • Hori T, Miyake Y, Yamasaki N, et al. Solution processable organic solar cell based on bulk heterojunction utilizing phthalocyanine derivative. Appl Phys Exp. 2010;3:101602–101603. DOI:10.1143/APEX.3.101602.
  • Dao QD, Hori T, Fukumura K, et al. Efficiency enhancement in mesogenic-phthalocyanine-based solar cells with processing additives. Appl Phys Lett. 2012;101:263301–263303. DOI:10.1063/1.4773519.
  • Dao QD, Hori T, Masuda T, et al. Mechanism of degradation and improvement of stability on mesogenic- phthalocyaninebased bulk heterojunction solar cell. Jap J Appl Phys. 2013;52:012301–5. DOI:10.7567/JJAP.52.012301.
  • Jurow MJ, Hageman BA, Dimasi E, et al. Controlling morphology and molecular packing of alkane substituted phthalocyanine blend bulk heterojunction solar cells. J Mater Chem A. 2013;1:1557–1565. DOI:10.1039/C2TA00415A.
  • Dao Q-D, Hori T, Fukumura K, et al. Effects of processing additives on nanoscale phase separation, crystallization and photovoltaic performance of solar cells based on mesogenic Phthalocyanine. Org Elec. 2013;14:2628–2634. DOI:10.1016/j.orgel.2013.05.041.
  • Dao Q-D, Saito T, Nakano S, et al. Alkyl substituent length dependence of octaalkylphthalocyanine bulk heterojunction solar cells. Appl Phys Exp. 2013;6:122301. DOI:10.7567/APEX.6.122301.
  • Dao Q-D, Kumada T, Fukui H, et al. Blend ratio dependence of photovoltaic properties in octahexylphthalocyanine-based small molecule solar cell. Jap J Appl Phys. 2014;53:05FZ05–4. DOI:10.7567/JJAP.53.05FZ05.
  • Oukachmih M, Destruel P, Seguy I, et al. New organic discotic materials for photovoltaic conversion. Solar Energy Mater Solar Cells. 2005;85:535–543. DOI:10.1016/j.solmat.2004.05.012.
  • Jeong S, Kwon Y, Choi B-D, et al. Improved efficiency of bulk heterojunction poly(3-hexylthiophene):[6,6]-phenyl-C[sub 61]-butyric acid methyl ester photovoltaic devices using discotic liquid crystal additives. Appl Phys Lett. 2010;96:183305–3. DOI:10.1063/1.3395391.
  • Zheng Q, Fang G, Bai W, et al. Efficiency improvement in organic solar cells by inserting a discotic liquid crystal. Solar Energy Mater Solar Cells. 2011;95:2200–2205. DOI:10.1016/j.solmat.2011.03.024.
  • Schmidt-Mende L, Fechtenkotter A, Mullen K, et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science. 2001;293:1119–1122. DOI:10.1126/science.293.5532.1119.
  • Schmidt-Mende L, Fechtenkötter A, Müllen K, et al. Efficient organic photovoltaics from soluble discotic liquid crystalline materials. Physica E: Low-Dimens Syst Nanostruct. 2002;14:263–267. DOI:10.1016/S1386-9477(02)00400-9.
  • Schmidt-Mende L, Watson M, Müllen K, et al. Organic thin film photovoltaic devices from discotic materials. Mol Cryst Liq Cryst. 2003;396:73–90. DOI:10.1080/15421400390213203.
  • Hassheider T, Benning SA, Lauhof MW, et al. Organic heterojunction photovoltaic cells made of discotic mesogenic materials. Mol Cryst Liq Cryst. 2004;413:461–472. DOI:10.1080/15421400490439103.
  • Jung J, Rybak A, Slazak A, et al. Photogeneration and photovoltaic effect in blends of derivatives of hexabenzocoronene and perylene. Synth Met. 2005;155:150–156. DOI:10.1016/j.synthmet.2005.07.339.
  • Schmidtke JP, Friend RH, Kastler M, et al. Control of morphology in efficient photovoltaic diodes from discotic liquid crystals. J Chem Phys. 2006;124:174704. DOI:10.1063/1.2194536.
  • Li J, Kastler M, Pisula W, et al. Organic bulk-heterojunction photovoltaics based on alkyl substituted discotics. Adv Funct Mater. 2007;17:2528–2533. DOI:10.1002/(ISSN)1616-3028.
  • Feng X, Liu M, Pisula W, et al. Supramolecular organization and photovoltaics of triangle-shaped discotic graphenes with swallow-tailed alkyl substituents. Adv Mater. 2008;20:2684–2689. DOI:10.1002/adma.v20:14.
  • Hesse HC, Weickert J, Al-Hussein M, et al. Discotic materials for organic solar cells: effects of chemical structure on assembly and performance. Solar Energy Mater Solar Cells. 2010;94:560–567. DOI:10.1016/j.solmat.2009.11.024.
  • Wong WWH, Singh TB, Vak D, et al. Solution processablefluorenyl hexa-peri-hexabenzocoronenes in organic field-effect transistors and solar cells. Adv Funct Mater. 2010;20:927–938. DOI:10.1002/adfm.200901827.
  • Kumar S. Recent developments in the chemistry of triphenylene-based discotic liquid crystals. Liq Cryst. 2004;31:1037–1059. DOI:10.1080/02678290410001724746.
  • Kumar S. Triphenylene‐based discotic liquid crystal dimers, oligomers and polymers. Liq Cryst. 2005;32:1089–1113. DOI:10.1080/02678290500117415.
  • Pal SK, Setia S, Avinash BS, et al. Triphenylene-based discotic liquid crystals: recent advances. Liq Cryst. 2013;40:1769–1816. DOI:10.1080/02678292.2013.854418.
  • Adam D, Schuhmacher P, Simmerer J, et al. Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature (London). 1994;371:141–143. DOI:10.1038/371141a0.
  • Marguet S, Markovitsi D, Millié P, et al. Influence of disorder on electronic excited states: an experimental and numerical study of alkylthiotriphenylene columnar phases. J Phys Chem B. 1998;102:4697–4710. DOI:10.1021/jp980623n.
  • Kumar S, Varshney SK. Synthesis of triphenylene and dibenzopyrene derivatives: vanadium oxytrichloride a novel reagent. Synthesis. 2001;2001:0305–311. DOI:10.1055/s-2001-10821.
  • Wang Q, Moser J-E, Grätzel M. Electrochemical impedance spectroscopicanalysis of dye-sensitized solar cells. J Phys Chem B. 2005;109:14945–14953. DOI:10.1021/jp052768h.
  • Boschloo G, Häggman L, Hagfeldt AJ. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. Phys Chem B. 2006;110:13144–13150. DOI:10.1021/jp0619641.
  • Bushby R, Lozman OR, Mason LA, et al. Cyclic voltammetry studies of discotic liquid crystals. Mol Cryst Liq Cryst. 2004;410:171–181. DOI:10.1080/15421400490436313.
  • Suresh Kumar P, Kumar S, Lakshminarayanan V. Hybrid organic/inorganic nanocomposite as a quasi-one-dimensional semiconductor under ambient conditions. J Appl Phys. 2009;106:093701–6. DOI:10.1063/1.3248342.
  • Baheti A, Singh P, Lee C-P, et al. 2,7-Diaminofluorene-based organic dyes for dye-sensitized solar cells: effect of auxiliary donor on optical and electrochemical properties. J Org Chem. 2011;76:4910–4920. DOI:10.1021/jo200501b.
  • Adachi M, Sakamoto M, Jiu J, et al. Determination of parameters of electron transport in DSSCs using electrochemical impedance spectroscopy. J Phys Chem B 2006;110:13872–13880.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.