174
Views
5
CrossRef citations to date
0
Altmetric
Articles

Self-organisation and alignment properties of homeotropically confined model liquid crystalline dendrimer systems

&
Pages 944-954 | Received 15 Dec 2015, Accepted 26 Jan 2016, Published online: 01 Mar 2016

References

  • Adroin N, Astruc D. Molecular trees: from syntheses towards applications. Bul Soc Chem Fr. 1995;132:875–909.
  • Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev. 2010;110:1857–1959.
  • Astruc D, Chardac F. Dendritic catalysts and dendrimers in catalysis. Chem Rev. 2001;101:2991–3024.
  • Bosman AW, Janssen HM, Meijer EW. About dendrimers: structure, physical properties, and applications. Chem Rev. 1999;99:1665–1688.
  • Bronstein LM, Shifrina ZB. Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. Chem Rev. 2011;111:5301–5344.
  • Tomalia DA, Frechet JMJ. Introduction to the dendritic state. Chichester: John Wiley and Sons, Ltd; 2002.
  • Klajnert B, Peng L, Cena V. Dendrimers in biomedical applications. Cambridge: RSC Publishing; 2013.
  • Fahmi A, Appelhans D, Danani A, et al. Dendrimer-based hybrid fibers as potential platform for 1D-objects in nanotechnology. Cambridge: RSC Publishing; 2013. p. 14–29.
  • Sousa-Herves A, Groger D, Calderon M, et al. Anionic dendritic polymers for biomedical applications. Cambridge: RSC Publishing; 2013. p. 56–72.
  • Donnio B, Buathong S, Bury I, et al. Liquid crystalline dendrimers. Chem Soc Rev. 2007;36:1495–1513.
  • Marcos M, Martin-Rapun R, Omenat A, et al. Highly congested liquid crystal structures: dendrimers, dendrons, dendronized and hyperbranched polymers. Chem Soc Rev. 2007;36:1889–1901.
  • Percec V, Kawasumi M. Synthesis and characterization of a thermotropic nematic liquid crystalline dendrimeric polymer. Macromol. 1992;25:3843–3850.
  • Goodby JW, Mehl GH, Saez IM, et al. Liquid crystals with restricted molecular topologies: supermolecules and supramolecular assemblies. Chem Commun. 1998;998;2057–2070.
  • Rosen BM, Wilson CJ, Wilson DA, et al. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem Rev. 2009;109:6275–6540.
  • Nhu Y, Hoang T, Pociecha D, et al. A liquid-crystalline fullereneoligophenylenevinylene dyad which displays columnar mesomorphism. Soft Matter. 2011;7:4948–4953.
  • Nagy ZT, Heinrich B, Guillon D, et al. Heterolithic azobenzene-containing supermolecular tripedal liquid crystals self-organizing into highly segregated bilayered smectic phases. J Mater Chem. 2012;22:18614–18622.
  • Kim YK, Senyuk B, Shin ST, et al. Surface alignment, anchoring transitions, optical properties, and topological defects in the thermotropic nematic phase of organo-siloxane tetrapodes. Soft Matter. 2013;10:500–509.
  • Terzis AF, Vanakaras AG, Photinos DJ. Conformational phase transitions and re-entrance phenomena in dendromesogens. Molec Cryst Liq Crys. 2000;352:265–274.
  • Vanakaras AG, Photinos DJ. Ordered fluids of globular supermolecules. J Mater Chem. 2001;11:2832–2838.
  • Peroukidis SD, Vanakaras AG, Photinos DJ. A simple theory of molecular organization in fullerenecontaining liquid crystals. J Chem Phys. 2005;123:164904.
  • Ilnytskyi JM, Lintuvuori J, Wilson M. Simulation of bulk phases formed by polyphilic liquid crystal dendrimers. Condens Matter Phys. 2010;13:33001–33016.
  • Hughes ZE, Wilson MR, Stimson LM. Coarse-grained simulation studies of a liquid crystal dendrimer: towards computational predictions of nanoscale structure through microphase separation. Soft Matter. 2005;1:436–443.
  • Vanakaras AG, Photinos DJ. Molecular theory of dendritic liquid crystals: self-organisation and phase transitions. J Mater Chem. 2005;15:2002–2012.
  • Richardson RM, Hanna S, Brooks NJ, et al. Columnar phases in liquid crystal dendrimers: Variable Pressure X-Ray diffraction. Mol Cryst Liq Cryst. 2011;541:177–187.
  • Ostrovskii B, Sulyanov S, Boiko N, et al. Order and frustration in liquid–crystalline dendrimers. Eur Phys J E. 2013;36:1–11.
  • Bellini T, Radzihovsky L, Toner J, et al. Universality and scaling in the disordering of a smectic liquid crystal. Science. 2001;294:1074–1079.
  • Ghoufi A. Nanoconfined gases, liquids and liquid crystals in porous materials. Mol Simul. 2014;40:698–712.
  • Allen MP. Molecular simulation and theory of liquid crystal surface anchoring. Mol Phys. 1999;96:1391–1397.
  • Binger DR, Hanna S. Computer simulation of interactions between liquid crystal molecules and polymer surfaces I. Alignment of nematic and smectic A phases. Liq Cryst. 1999;26:1205–1224.
  • Gelb LD, Gubbins KE, Radhakrishnan R, et al. Phase separation in confined systems. Rep Prog Phys. 2000;63:727.
  • Rodríguez-Ponce I, Romero-Enrique JM, Velasco E, et al. Anchoring and nematic-isotropic transitions in a confined nematic phase. J Phys: Condens Matter. 2000;12:A363.
  • Gwóźdź E, Pasterny K, Bródka A. Planar anchoring of polar liquid crystal molecules in slit poremolecular dynamics simulation study. Chem Phys Lett. 2001;335:71–76.
  • Crawford GP, Zumer S. Liquid crystal in complex geometries. London: Taylor & Francis; 1996.
  • Teixeira PIC, Sluckin TJ. Microscopic theory of anchoring transitions at the surfaces of pure liquid crystals and their mixtures. II. The effect of surface adsorption. J Chem Phys. 1992;97:1510–1519.
  • Teixeira PIC, Chrzanowska A, Wall GD, et al. Density functional theory of a GayBerne film between aligning walls. Mol Phys. 2001;99:889–897.
  • Zannoni C. Molecular design and computer simulations of novel mesophases. J Mater Chem. 2001;11:2637–2646.
  • Rodríguez-Ponce I, Romero-Enrique JM, Rull LF. Orientational transitions in a nematic liquid crystal confined by competing surfaces. Phys Rev E. 2001;64:051704.
  • Quintana J, Poiré EC, Domínguez H, et al. Phase equilibria of confined liquid crystals. Mol Phys. 2002;100:2597–2604.
  • Wall GD, Cleaver DJ. Computer simulations of adsorbed liquid crystal films. Mol Phys. 2003;101:1105–1112.
  • Steuer H, Hess S, Schoen M. Phase behavior of liquid crystals confined by smooth walls. Phys Rev E. 2004;69:031708.
  • Barmes F, Cleaver DJ. Computer simulation of a liquid-crystal anchoring transition. Phys Rev E. 2004;69:061705.
  • Cheung DL, Schmid F. Monte Carlo simulations of liquid crystals near rough walls. J Chem Phys. 2005;122:074902.
  • Iannacchione GS, Crawford GP, Žumer S, et al. Randomly constrained orientational order in porous glass. Phys Rev Lett. 1993;71:2595–2598.
  • Gué Gan R, Morineau D, Loverdo C, et al. Evidence of anisotropic quenched disorder effects on a smectic liquid crystal confined in porous silicon. Phys Rev E. 2006;73:011707.
  • Cheung D, Schmid F. Isotropicnematic transition in liquid crystals confined between rough walls. Chem Phys Lett. 2006;418:392–396.
  • Kityk AV, Wolff M, Knorr K, et al. Continuous paranematic-to-nematic ordering transitions of liquid crystals in tubular silica nanochannels. Phys Rev Lett. 2008;101:187–801.
  • Guégan R, Morineau D, Lefort R, et al.. Molecular dynamics of a short-range ordered smectic phase nanoconfined in porous silicon. J Chem Phys. 2007;126:064902.
  • Lefort R, Morineau D, Guégan R, et al. Relation between static short-range order and dynamic heterogeneities in a nanoconfined liquid crystal. Phys Rev E. 2008;78:040701.
  • Care CM, Cleaver DJ. Computer simulation of liquid crystals. Rep Prog Phys. 2005;68:2665.
  • Kiyohara K, Asaka K, Monobe H, et al. Surface anchoring of rodlike molecules on corrugated substrates. J Chem Phys. 2006;124:034704.
  • Ghoufi A, Morineau D, Lefort R, et al. Configurational temperature and local properties of the anisotropic GayBerne liquid crystal model: Applications to the isotropic liquid/vapor interface and isotropic/nematic transition. J Chem Phys. 2011;134:034116.
  • Babadi M, Ejtehadi MR. An exact treatment of ellipsoid-substrate interactions. EPL (Europhysics Letters). 2007;77:23002.
  • Caneda-Guzmán E, Moreno-Razo J, Díaz-Herrera E, et al. Molecular aspect ratio and anchoring strength effects in a confined GayBerne liquid crystal. Mol Phys. 2014;112:1149–1159.
  • Ji Q, Lefort R, Ghoufi A, et al. Pore dimensionality effects on the dynamics of a nanoconfined liquid-crystal. Chem Phys Lett. 2009;482:234–238.
  • Cheung DL. Monte carlo simulations of liquid crystals between microstructured substrates. J Chem Phys. 2008;128:194902.
  • Moradi M, Hashemi S. Monte carlo study of one-dimensional confined fluids with gay-berne intermolecular potential. Eur Phys J B. 2011;84:289–297.
  • Ji Q, Lefort R, Busselez R, et al. Structure and dynamics of a GayBerne liquid crystal confined in cylindrical nanopores. J Chem Phys. 2009;130:234501.
  • Ji Q, Lefort R, Morineau D. Influence of pore shape on the structure of a nanoconfined GayBerne liquid crystal. Chem Phys Lett. 2009;478:161–165.
  • Alba-Simionesco C, Coasne B, Dosseh G, et al. Effects of confinement on freezing and melting. J Phys: Condens Matter. 2006;18:R15.
  • Caneda-Guzán E, Moreno-Razo J, Díaz-Herrera E, et al. Molecular aspect ratio and anchoring strength effects in a confined GayBerne liquid crystal. Mol Phys. 2014;112:1149–1159.
  • Wallace EJ, Buzza DMA, Read DJ. Monte carlo simulation scheme for dendrimers satisfying detailed balance. Macromol. 2001;34:7140–7146.
  • Klos JS, Sommer JU. Properties of dendrimers with flexible spacer-chains: a monte carlo study. Macromol. 2009;42:4878–4886.
  • Gotze IO, Likos CN. Conformations of flexible dendrimers: a simulation study. Macromol. 2003;36:8189–8197.
  • Lenz DA, Blaak R, Likos CN. Colloid-dendrimer complexation. Soft Matter. 2009;5:4542–4548.
  • Lenz DA, Blaak R, Likos CN. Adsorption characteristics of amphiphilic dendrimers. Soft Matter. 2009;5:2905–2912.
  • Christopoulos DK, Photinos DJ, Stimson LM, et al. Structure and nanomechanics of linear dendronised polymers: a molecular simulation study. J Mater Chem. 2003;13:2756–2764.
  • Christopoulos DK, Terzis AF, Vanakaras AG, et al. Helix formation in linear achiral dendronized polymers: A computer simulation study. J Chem Phys. 2006;125:204907.
  • Córdova-Mateo E, Bertran O, Zhang B, et al. Interactions in dendronized polymers: intramolecular dominates intermolecular. Soft Matter. 2014;10:1032–1044.
  • Workineh ZG, Vanakaras AG. Surface-induced ordering on model liquid crystalline dendrimers. Polymers. 2014;6:2082–2099.
  • Gay JG, Berne BJ. Modification of the overlap potential to mimic a linear sitesite potential. J Chem Phys. 1981;74:3316–3319.
  • de Miguel E, Vega C. The global phase diagram of the GayBerne model. J Chem Phys. 2002;117:6313–6322.
  • Gruhn T, Schoen M. Microscopic structure of molecularly thin confined liquid-crystal films. Phys Rev E. 1997;55:2861–2875.
  • Gruhn T, Schoen M. Substrate-induced order in confined nematic liquid-crystal films. J Chem Phys. 1998;108:9124–9136.
  • Mima T, Yasuoka K. Interfacial anisotropy in the transport of liquid crystals confined between flat, structureless walls: A molecular dynamics simulation approach. Phys Rev E. 2008;77:011705.
  • Steuer H, Hess S, Schoen M. Pressure, alignment and phase behavior of a simple model liquid crystal. A Monte Carlo simulation study. Phys A: Statistical Mech Appl. 2003;328:322–334.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.