375
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Detection of creatinine using surface-driven ordering transitions of liquid crystals

, &
Pages 1126-1134 | Received 11 Jan 2016, Accepted 29 Feb 2016, Published online: 22 Mar 2016

References

  • Levey AS, Perrone RD, Madias NE. Serum creatinine and renal function. Annu Rev Med. 1988;39:465–490. doi:10.1146/annurev.me.39.020188.002341.
  • Narayanan S, Appleton HD. Creatinine: a review. Clin Chem. 1980;26:1119–1126.
  • Stark JL. Interpreting B.U.N./creatinine levels: it’s not as simple as you think. Nursing. 1994;24:58–61. doi:10.1097/00152193-199409000-00025.
  • Sena FS, Syed D, McComb RB. Effect of high creatine content on the Kodak single slide method for creatinine. Clin Chem. 1988;34:594–595.
  • Jaffe MZ. Ueber den niederschlag welchen pikrinsaure in nomalen harn erzeugt und uber eine neue reaction des kreatinins. Z Physiol Chem. 1886;10:391–400.
  • Fossati P, Prencipe L, Berti G. Enzymic creatinine assay: a new colorimetric method based on hydrogen peroxide measurement. Clin Chem. 1983;29:1494–1496.
  • Lo SC, Tsai KS. Glucose interference in Jaffé creatinine method: effect of calcium from peritoneal dialysate. Clin Chem. 1994;40:2326–2327.
  • Weber JA, Van Zanten AP. Interferences in current methods for measurement of creatinine. Clin Chem. 1991;37:695–700.
  • Skurup A, Kristensen T, Wennecke G. New creatinine sensor for point-of-care testing of creatinine meets the National Kidney Disease Education Program guidelines. Clin Chem Lab Med. 2008;46:3–8. doi:10.1515/CCLM.2008.004.
  • Meyerhoff M, Rechnitz GA. An activated enzyme electrode for creatinine. Anal Chim Acta. 1976;85:277–285. doi:10.1016/S0003-2670(01)84692-4.
  • Killard AJ, Smyth MR. Creatinine biosensors: principles and designs. Trends in Biotechnol. 2000;18:433–437. doi:10.1016/S0167-7799(00)01491-8.
  • Lad U, Khokhar S, Kale GM. Electrochemical creatinine biosensors. Anal Chem. 2008;80:7910–7917. doi:10.1021/ac801500t.
  • Tsuchida T, Yoda K. Multi-enzyme membrane electrodes for determination of creatinine and creatine in serum. Clin Chem. 1983;29:51–55.
  • Shepherd MDS. Point-of-care testing and creatinine measurement. Clin Biochem Rev. 2011;32:109–114.
  • Zinellua A, Caria MA, Tavera C, et al. Plasma creatinine and creatine quantification by capillary electrophoresis diode array detector. Anal Biochem. 2005;342:186–193. doi:10.1016/j.ab.2005.01.045.
  • Brake JM, Daschner MK, Luk Y-Y, et al. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science. 2003;302:2094−2097. doi:10.1126/science.1091749.
  • Lin IH, Miller DS, Bertics PJ, et al. Endotoxin-induced structural transformations in liquid crystalline droplets. Science. 2011;332:1297−1300. doi:10.1126/science.1195639.
  • Brake JM, Abbott NL. An experimental system for imaging the reversible adsorption of amphiphiles at aqueous−liquid crystal interfaces. Langmuir. 2002;18:6101−6109. doi:10.1021/la011746t.
  • Brake JM, Mezera AD, Abbott NL. Effect of surfactant structure on the orientation of liquid crystals at aqueous−liquid crystal interfaces. Langmuir. 2003;19:6436−6442. doi:10.1021/la034132s.
  • Lockwood NA, De Pablo JJ, Abbott NL. Influence of surfactant tail branching and organization on the orientation of liquid crystals at aqueous−liquid crystal interfaces. Langmuir. 2005;21:6805−6814. doi:10.1021/la050231p.
  • Price AD, Schwartz DK. DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface. J Am Chem Soc. 2008;130:8188−8194. doi:10.1021/ja0774055.
  • Brake JM, Daschner MK, Abbott NL. Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals. Langmuir. 2005;21:2218−2228. doi:10.1021/la0482397.
  • Lockwood NA, Mohr JC, Ji L, et al. Thermotropic liquid crystals as substrates for imaging the reorganization of matrigel by human embryonic stem cells. Adv Funct Mater. 2006;16:618−624. doi:10.1002/adfm.200500768.
  • Agarwal A, Sidiq S, Setia S, et al. Colloid-in-liquid crystal gels that respond to biomolecular interactions. Small. 2013;9:2785−2792. doi:10.1002/smll.201202869.
  • Sivakumar S, Wark KL, Gupta JK, et al. Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses. Adv Funct Mater. 2009;19:2260−2265. doi:10.1002/adfm.200900399.
  • Sidiq S, Das D, Pal SK. A new pathway for the formation of radial nematic droplets within a lipid-laden aqueous-liquid crystal interface. RSC Adv. 2014;4:18889−18893. doi:10.1039/C3RA48044E.
  • Gupta JK, Zimmerman JS, De Pablo JJ, et al. Characterization of adsorbate-induced ordering transitions of liquid crystals within monodisperse droplets. Langmuir. 2009;25:9016−9024. doi:10.1021/la900786b.
  • Zhong S, Jang C-H. Nematic liquid crystal micro-droplets on solid surfaces and their ordering transition in bulk aqueous solution. Liq Cryst. 2015;42:1436–1443. doi:10.1080/02678292.2015.1055601.
  • Hu Q-Z, Jang C-H. Real-time and sensitive detection of lipase using liquid crystal droplet patterns supported on solid surfaces. Liq Cryst. 2014;41:597–602. doi:10.1080/02678292.2013.868053.
  • Kumar A, Pattanayek SK. Exploitation of orientation of liquid crystals 5CB and DSCG near surfaces to detect low protein concentration. Liq Cryst. 2015;42:1506–1514. doi:10.1080/02678292.2015.1044576.
  • Liu D, Jang CH. Imaging catalase reactions through interactions between liquid crystals and oil-in-water emulsions. Liq Cryst. 2014;41:163–168. doi:10.1080/02678292.2013.846421.
  • Kinsinger MI, Sun B, Abbott NL, et al. Reversible control of ordering transitions at aqueous/liquid crystal interfaces using functional amphiphilic polymers. Adv Mater. 2007;19:4208. doi:10.1002/adma.200700718.
  • Lee D-Y, Seo J-M, Khan W. pH-responsive aqueous/LC interfaces using SGLCP-b-polyacrylic acid block copolymers. Soft Matter. 2010;6:1964–1970. doi:10.1039/b926461b.
  • Seo J-M, Khan W, Park S-Y. Protein detection using aqueous/LC interfaces decorated with a novel polyacrylic acid block liquid crystalline polymer. Soft Matter. 2012;8:198–203. doi:10.1039/c1sm06616a.
  • Khan M, Park S-Y. Liquid crystal-based proton sensitive glucose biosensor. Anal Chem. 2014;86:1493–1501. doi:10.1021/ac402916v.
  • Bi X, Hartono D, Yang K-L. Real-time liquid crystal pH sensor for monitoring enzymatic activities of penicillinase. Adv Funct Mater. 2009;19:3760–3765. doi:10.1002/adfm.200900823.
  • Wei Y, Jang C-H. Detection of cholesterol molecules with a liquid crystal-based pH-driven sensor. J Mater Sci. 2015;50:4741–4748. doi:10.1007/s10853-015-9027-8.
  • Hu Q-Z, Jang C-H. Using liquid crystals for the real-time detection of urease at aqueous/liquid crystal interfaces. J Mater Sci. 2012;47:969–975. doi:10.1007/s10853-011-5876-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.