595
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Ionic liquid crystals based on viologen dimers: tuning the mesomorphism by varying the conformational freedom of the ionic layer

, , &
Pages 1161-1173 | Received 15 Jan 2016, Accepted 01 Mar 2016, Published online: 30 Mar 2016

References

  • Binnemans K. Ionic liquid crystals. Chem Rev. 2005;105:4148–4204. doi:10.1021/cr0400919.
  • Axenov KV, Laschat S. Thermotropic ionic liquid crystals. Materials. 2011;4:206–259. doi:10.3390/ma4010206.
  • Causin V, Saielli G. Ionic liquid crystals. In: Mohammad A, Inamuddin D, editors. Green solvents II. Properties and applications of ionic liquids. UK: Springer; 2012. p. 79–118.
  • Dobbs W, Douce L, Allouche L, et al. New ionic liquid crystals based on imidazolium salts. New J Chem. 2006;30:528–532. doi:10.1039/b600279j.
  • Dobbs W, Heinrich B, Bourgogne C, et al., et al. Mesomorphic imidazolium salts: new vectors for efficient siRNA transfection. J Am Chem Soc. 2009;131:13338–13346. doi:10.1021/ja903028f.
  • Li X, Bruce DW, Shreeve JM. Dicationic imidazolium-based ionic liquids and ionic liquid crystals with variously positioned fluoro substituents. J Mater Chem. 2009;19:8232–8238. doi:10.1039/b912873e.
  • Blesic M, Swadzba-Kwasny M, Holbrey JD, et al. New catanionic surfactants based on 1-alkyl-3-methylimidazolium alkylsulfonates, [CnH2n+1mim][CmH2m+1SO3]: mesomorphism and aggregation. Phys Chem Chem Phys. 2009;11:4260–4268. doi:10.1039/b822341f.
  • Zhang Q, Wang K, Ren Q, et al. Synthesis and properties of new ionic liquid crystals based on para-nitroazobenzene with substitution vinylimidazolium ion group. Liq Cryst. 2011;38:1349–1355. doi:10.1080/02678292.2011.615946.
  • Lava K, Binnemans K, Cardinaels T. Piperidinium, piperazinium and morpholinium ionic liquid crystals. J Phys Chem B. 2009;113:9506–9511. doi:10.1021/jp903667e
  • Lo Celso F, Pibiri I, Triolo A, et al., et al. Study on the thermotropic properties of highly fluorinated 1,2,4-oxadiazolylpyridinium salts and their perspective applications as ionic liquid crystals. J Mater Chem. 2007;17:1201–1208. doi:10.1039/b615190f.
  • Tanabe K, Suzui Y, Hasegawa M, et al. Full-color tunable photoluminescent ionic liquid crystals based on tripodal pyridinium, pyrimidinium, and quinolinium salts. J Am Chem Soc. 2012;134:5652–5661. doi:10.1021/ja3001979.
  • Causin V, Saielli G. Effect of asymmetric substitution on the mesomorphic behaviour of low-melting viologen salts of bis(trifluoromethanesulfonyl)amide. J Mater Chem. 2009;19:9153–9162. doi:10.1039/b915559g.
  • Carlos Diaz-Cuadros J, Larios-Lopez L, Julia Rodriguez-Gonzalez R, et al. Ionic liquid crystals bearing bipyridinium and pentaphenylene groups. J Mol Liq. 2010;157:133–141. doi:10.1016/j.molliq.2010.09.002.
  • Asaftei S, Ciobanu M, Lepadatu AM, et al. Thermotropic ionic liquid crystals by molecular-assembly and ion pairing of 4,4ʹ-bipyridinium derivatives and tris(dodecyloxy)benzenesulfonats in a non-polar solvent. J Mater Chem. 2012;22:14426–14437. doi:10.1039/c2jm31830j.
  • Xu F, Matsubara S, Matsumoto K, et al. Effects of alkyl chain length on properties of N-alkyl-N-methylpyrrolidinium fluorohydrogenate ionic liquid crystals. J Fluorine Chem. 2012;135:344–349. doi:10.1016/j.jfluchem.2012.01.001.
  • Cardinaels T, Lava K, Goossens K, et al. 1,10-Phenanthrolinium ionic liquid crystals. Langmuir. 2011;27:2036–2043. doi:10.1021/la1047276.
  • Sauer S, Saliba S, Tussetschlager S,, et al. p-Alkoxybiphenyls with guanidinium head groups displaying smectic mesophases. Liq Cryst. 2009;36:275–299. doi:10.1080/02678290902850027.
  • Sauer S, Steinke N, Baro A, et al. Guanidinium chlorides with triphenylene moieties displaying columnar mesophases. Chem Mater. 2008;20:1909–1915. doi:10.1021/cm702967c.
  • Butschies M, Frey W, Laschat S. Designer ionic liquid crystals based on congruently shaped guanidinium sulfonates. Chem Eur J. 2012;18:3014–3022. doi:10.1002/chem.201101925.
  • Baudoux J, Judeinstein P, Cahard D, et al. Design and synthesis of novel ionic liquid/liquid crystals (IL2Cs) with axial chirality. Tetrahedron Lett. 2005;46:1137–1140. doi:10.1016/j.tetlet.2004.12.097.
  • Goossens K, Nockemann P, Driesen K, et al., et al. Imidazolium ionic liquid crystals with pendant mesogenic groups. Chem Mater. 2008;20:157–168. doi:10.1021/cm702321c.
  • Li W, Zhang J, Li B, et al. Branched quaternary ammonium amphiphiles: nematic ionic liquid crystals near room temperature. Chem Commun. 2009;5269–5271.
  • Ringstrand B, Jankowiak A, Johnson LE, et al. Anion-driven mesogenicity: a comparative study of ionic liquid crystals based on the [closo-1-CB9H10]− and [closo-1-CB11H12]− clusters. J Mater Chem. 2012;22:4874–4880. doi:10.1039/c2jm15448j.
  • Butschies M, Mansueto M, Haenle JC, et al., et al. Headgroups versus symmetry in congruent ion pairs: which one does the job in mesomorphic aryl guanidinium and aryl imidazolium sulphonates? Liq Cryst. 2014;41:821–838. doi:10.1080/02678292.2014.885600.
  • Saielli G. MD simulation of the mesomorphic behaviour of 1-hexadecyl-3-methylimidazolium nitrate: assessment of the performance of a coarse-grained force field. Soft Matter. 2012;8:10279–10287. doi:10.1039/c2sm26376a.
  • Ji Y, Shi R, Wang Y, et al. Effect of the chain length on the structure of ionic liquids: from spatial heterogeneity to ionic liquid crystals. J Phys Chem B. 2013;117:1104–1109. doi:10.1021/jp310231f.
  • Saielli G, Voth GA, Wang Y. Diffusion mechanisms in smectic ionic liquid crystals: insights from coarse-grained MD simulations. Soft Matter. 2013;9:5716–5725. doi:10.1039/c3sm50375e.
  • Ganzenmüller GC, Patey GN. Charge ordering induces a smectic phase in oblate ionic liquid crystals. Phys Rev Lett. 2010;105:137801. doi:10.1103/PhysRevLett.105.137801.
  • Saielli G, Bagno A, Wang Y. Insights on the isotropic-to-smectic A transition in ionic liquid crystals from coarse-grained molecular dynamics simulations: the role of microphase segregation. J Phys Chem B. 2015;119:3829–3836. doi:10.1021/jp5104565.
  • Saielli G. Fully-atomistic simulations of the ionic liquid crystal [C16MIm][NO3]: orientational order parameters and voids distribution. J Phys Chem B. 2016;120. doi:10.1021/acs.jpcb.5b12469. [Epub ahead of print]
  • Frezzato D, Saielli G. Distribution and dynamic properties of xenon dissolved in the ionic smectic phase of [C16mim][NO3]: MD simulation and theoretical model. J Phys Chem B. 2016;120. doi:10.1021/acs.jpcb.5b12470. [Epub ahead of print]
  • Kondrat S, Bier M, Harnau L. Phase behavior of ionic liquid crystals. J Chem Phys. 2010;132:184901. doi:10.1063/1.3417384.
  • Preiss UP, Beichel W, Erle AMT, et al. Is universal, simple melting point prediction possible? Chem Phys Chem. 2011;12:2959–2972.
  • Goodby JW, Mandle RJ, Davis EJ, et al. What makes a liquid crystal? The effect of free volume on soft matter. Liq Cryst. 2015;42:593–622.
  • Yoshio M, Ichikawa T, Shimura H, et al., et al. Columnar liquid-crystalline imidazolium salts. Effects of anions and cations on mesomorphic properties and ionic conductivities. Bull Chem Soc Jpn. 2007;80:1836–1841. doi:10.1246/bcsj.80.1836.
  • Henmi M, Nakatsuji K, Ichikawa T, et al., et al. Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation of ions. Adv Mater. 2012;24:2238–2241. doi:10.1002/adma.201200108.
  • Yoshio M, Kagata T, Hoshino K, et al. One-dimensional ion-conductive polymer films: alignment and fixation of ionic channels formed by self-organization of polymerizable columnar liquid crystals. J Am Chem Soc. 2006;128:5570–5577. doi:10.1021/ja0606935.
  • Safavi A, Tohidi M. Design and characterization of liquid crystal−graphite composite electrodes. J Phys Chem C. 2010;114:6132–6140. doi:10.1021/jp9114354.
  • Shvedene NV, Avramenko OA, Baulin VE, et al. Iodide-selective screen-printed electrodes based on low-melting ionic solids and metallated phthalocyanine. Electroanal. 2011;23:1067–1072. doi:10.1002/elan.v23.5.
  • Beneduci A, Cospito S, La Deda M, et al. Electrofluorochromism in pi-conjugated ionic liquid crystals. Nat Commun 2014;5. doi:10.1038/ncomms4105.
  • Jordão N, Cabrita L, Pina F, et al. Novel bipyridinium ionic liquids as liquid electrochromic devices. Chem Eur J. 2014;20:3982–3988. doi:10.1002/chem.201304451.
  • Jordão N, Cruz H, Branco A, et al. Electrochromic devices based on disubstituted oxo-bipyridinium ionic liquids. Chem Plus Chem. 2015;80:202–208. doi:10.1002/cplu.201402232.
  • Causin V, Saielli G. Effect of a structural modification of the bipyridinium core on the phase behaviour of viologen-based bistriflimide salts. J Mol Liq. 2009;145:41–47. doi:10.1016/j.molliq.2008.11.013.
  • Bonchio M, Carraro M, Casella G, et al. Thermal behaviour and electrochemical properties of bis(trifluoromethanesulfonyl)amide and dodecatungstosilicate viologen dimers. Phys Chem Chem Phys. 2012;14:2710–2717. doi:10.1039/c2cp23580c.
  • Casella G, Causin V, Rastrelli F, et al. Viologen-based ionic liquid crystals: induction of a smectic A phase by dimerisation. Phys Chem Chem Phys. 2014;16:5048–5051. doi:10.1039/c3cp54628d.
  • Griffin AC, Britt TR. Effect of molecular structure on mesomorphism. 12. Flexible-center Siamese-twin liquid crystalline diesters - a “prepolymer” model. J Am Chem Soc. 1981;103:4957–4959. doi:10.1021/ja00406a056.
  • Lu Z, Henderson PA, Paterson BJA, et al. Liquid crystal dimers and the twist-bend nematic phase. The preparation and characterisation of the α,ω-bis(4-cyanobiphenyl-4′-yl) alkanedioates. Liq Cryst. 2014;41:471–483. doi:10.1080/02678292.2014.888803.
  • Imrie CT, Henderson PA. Liquid crystal dimers and higher oligomers: between monomers and polymers. Chem Soc Rev. 2007;36:2096–2124. doi:10.1039/b714102e.
  • Wang Y, Yoon HG, Bisoyi HK, et al. Hybrid rod-like and bent-core liquid crystal dimers exhibiting biaxial smectic A and nematic phases. J Mater Chem. 2012;22:20363–20367. doi:10.1039/c2jm34315k.
  • Shanker G, Yelamaggad CV. Synthesis and thermal behavior of chiral dimers: occurrence of highly frustrated and cholesteric liquid crystal phases. New J Chem. 2012;36:918–926. doi:10.1039/c2nj21035e.
  • Chan T, Lu Z, Yam W, et al. Non-symmetric liquid crystal dimers containing an isoflavone moiety. Liq Cryst. 2012;39:393–402. doi:10.1080/02678292.2012.658712.
  • Lee H, Lu Z, Henderson PA, et al., et al. Cholesteryl-based liquid crystal dimers containing a sulfur-sulfur link in the flexible spacer. Liq Cryst. 2012;39:259–268. doi:10.1080/02678292.2011.641753.
  • Cestari M, Diez-Berart S, Dunmur DA, et al., et al. Phase behavior and properties of the liquid-crystal dimer 1 “,7 “-bis(4-cyanobiphenyl-4 ‘- yl) heptane: A twist-bend nematic liquid crystal. Phys Rev E. 2011;84:031704. doi:10.1103/PhysRevE.84.031704.
  • Henderson PA, Imrie CT. Methylene-linked liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2011;38:1407–1414. doi:10.1080/02678292.2011.624368.
  • Borshch V, Kim Y, Xiang J, et al., et al. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nat Commun. 2013;4. doi:10.1038/ncomms3635.
  • Greco C, Luckhurst GR, Ferrarini A. Molecular geometry, twist-bend nematic phase and unconventional elasticity: A generalised Maier-Saupe theory. Soft Matter. 2014;10:9318–9323. doi:10.1039/C4SM02173H.
  • Hoffmann A, Vanakaras AG, Kohlmeier A, et al. On the structure of the Nx phase of symmetric dimers: inferences from NMR. Soft Matter. 2015;11:850–855. doi:10.1039/C4SM02480J.
  • Mandle RJ, Davis EJ, Archbold CT, et al., et al. Apolar bimesogens and the incidence of the twist-bend nematic phase. Chem Eur J. 2015;21:8158–8167. doi:10.1002/chem.201500423.
  • Sebastián N, López DO, Robles-Hernández B, et al., et al. Dielectric, calorimetric and mesophase properties of 1ʹ’-(2ʹ,4-difluorobiphenyl-4ʹ-yloxy)-9ʹ’-(4-cyanobiphenyl-4ʹ-yloxy) nonane: an odd liquid crystal dimer with a monotropic mesophase having the characteristics of a twist-bend nematic phase. Phys Chem Chem Phys. 2014;16:21391–21406. doi:10.1039/C4CP03462G.
  • Luckhurst G. Liquid crystals: a chemical physicist’s view. Liq Cryst. 2005;32:1335–1364. doi:10.1080/02678290500423128.
  • Ferrarini A, Luckhurst GR, Nordio PL, et al. Understanding the unusual transitional behaviour of liquid crystal dimers. Chem Phys Lett. 1993;214:409–417. doi:10.1016/0009-2614(93)85658-B.
  • Ferrarini A, Luckhurst GR, Nordio PL, et al. Prediction of the transitional properties of liquid-crystal dimers - a molecular-field calculation based on the surface tensor parametrization. J Chem Phys. 1994;100:1460–1469. doi:10.1063/1.466625.
  • Berardi R, Muccioli L, Zannoni C. Can nematic transitions be predicted by atomistic simulations? A computational study of the odd even effect. Chem Phys Chem. 2004;5:104–111. doi:10.1002/(ISSN)1439-7641.
  • Date RW, Imrie CT, Luckhurst GR, et al. Smectogenic dimeric liquid crystals. The preparation and properties of the α,ω-bis(4-n-alkylanilinebenzylidine-4′-oxy)alkanes. Liq Cryst. 1992;12:203–238. doi:10.1080/02678299208030393.
  • Bara JE, Hatakeyama ES, Wiesenauer BR, et al. Thermotropic liquid crystal behaviour of gemini imidazolium-based ionic amphiphiles. Liq Cryst. 2010;37:1587–1599. doi:10.1080/02678292.2010.521859.
  • Schenkel MR, Hooper JB, Moran MJ, et al. Effect of counter-ion on the thermotropic liquid crystal behaviour of bis(alkyl)-tris(imidazolium salt) compounds. Liq Cryst. 2014;41:1668–1685. doi:10.1080/02678292.2014.948087.
  • Schenkel MR, Shao R, Robertson LA, et al. New ionic organic compounds containing a linear tris(imidazolium) core and their thermotropic liquid crystal behaviour. Liq Cryst. 2013;40:1067–1081. doi:10.1080/02678292.2013.798692.
  • Acree WE, Chickos JS, editors. Phase transition enthalpy measurements of organic and organometallic compounds. Sublimation, vaporization and fusion enthalpies from 1880 to 2010. J Phys Chem Ref Data. 2010;39:043101. doi:10.1063/1.3309507.
  • Woolf LA. Insights into solute-solute-solvent interactions from transport property measurements with particular reference to methanol-water mixtures and their constituents. Pure Appl Chem. 1985;57:1083–1090. doi:10.1351/pac198557081083.
  • O’Reilly DE, Peterson EM, Yasaitis EL. Self-diffusion coefficients and rotational correlation times in polar liquids. IV. dichloromethane and pyridine. J Chem Phys. 1972;57:890–894. doi:10.1063/1.1678335.
  • Bowlas CJ, Bruce DW, Seddon KR. Liquid-crystalline ionic liquids. Chem Commun. 1996;1625–1626. doi:10.1039/cc9960001625.
  • Holbrey JD, Seddon KR. The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans. 1999;2133–2140. doi:10.1039/a902818h.
  • Bhowmik PK, Han HS, Cebe JJ, et al. Ambient temperature thermotropic liquid crystalline viologen bis(triflimide) salts. Liq Cryst. 2003;30:1433–1440. doi:10.1080/02678290310001621895.
  • Bradley AE, Hardacre C, Holbrey JD, et al. Small-angle X-ray scattering studies of liquid crystalline 1-Alkyl-3-methylimidazolium salts. Chem Mater. 2002;14:629–635. doi:10.1021/cm010542v.
  • Canongia Lopes JN, Shimizu K, Padua AAH, et al., et al. A tale of two ions: the conformational landscapes of Bis(trifluoromethanesulfonyl)amide and N,N-Dialkylpyrrolidinium. J Phys Chem B. 2008;112:1465–1472. doi:10.1021/jp076997a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.