324
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

An investigation into the hexagonal phases formed in high-concentration dispersions of well-defined cylindrical block copolymer micelles

, , , &
Pages 1148-1159 | Received 06 Jan 2016, Accepted 29 Feb 2016, Published online: 13 May 2016

References

  • Elemans JAAW, Rowan AE, Nolte RJM. Mastering molecular matter. Supramolecular architectures by hierarchical self-assembly. J Mater Chem. 2003;13(11):2661–2670. doi:10.1039/b304972h.
  • Ottani V, Martini D, Franchi M, et al. Hierarchical structures in fibrillar collagens. Micron. 2002;33(7–8):587–596. doi:10.1016/s0968-4328(02)00033-1.
  • Massey JA, Temple K, Cao L, et al. Self-assembly of organometallic block copolymers: the role of crystallinity of the core-forming polyferrocene block in the micellar morphologies formed by poly(ferrocenylsilane- b -dimethylsiloxane) in n -alkane solvents. J Am Chem Soc. 2000;122(47):11577–11584. doi:10.1021/ja002205d.
  • Wang X, Guerin G, Wang H, et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science. 2007;317(5838):644–647. doi:10.1126/science.1141382.
  • Gilroy JB, Gädt T, Whittell GR, et al. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat Chem. 2010;2(7):566–570. doi:10.1038/nchem.664.
  • Gilroy JB, Rupar PA, Whittell GR, et al. Probing the structure of the crystalline core of field-aligned, monodisperse, cylindrical polyisoprene block-polyferrocenylsilane micelles in solution using synchrotron small- and wide-angle X-ray scattering. J Am Chem Soc. 2011;133(42):17056–17062. doi:10.1021/ja207417z.
  • Hayward DW, Gilroy JB, Rupar PA, et al. Liquid crystalline phase behavior of well-defined cylindrical block copolymer micelles using synchrotron small-angle X-ray scattering. Macromolecules. 2015;48(5):1579–1591. doi:10.1021/ma502222f.
  • Qian J, Zhang M, Manners I, et al. Nanofiber micelles from the self-assembly of block copolymers. Trends Biotechnol. 2010;28(2):84–92. doi:10.1016/j.tibtech.2009.11.003.
  • Wang X, Liu K, Arsenault AC, et al. Shell-cross-linked cylindrical polyisoprene-b-polyferrocenylsilane (PI-b-PFS) block copolymer micelles: one-dimensional (1D) organometallic nanocylinders. J Am Chem Soc. 2007;129(17):5630–5639. doi:10.1021/ja068730f.
  • Wang H, Lin W, Fritz KP, et al. Cylindrical block co-micelles with spatially selective functionalization by nanoparticles. J Am Chem Soc. 2007;129(43):12924–12925. doi:10.1021/ja075587x.
  • Lunn DJ, Boott CE, Bass KE, et al. Controlled thiol-ene functionalization of polyferrocenylsilane-block-polyvinylsiloxane copolymers. Macromol Chem Phys. 2013;214:2813–2820. doi:10.1002/macp.201300520.
  • Hudson ZM, Lunn DJ, Winnik MA, et al. Colour-tunable fluorescent multiblock micelles. Nat Commun. 2014;5:1–8. doi:10.1038/ncomms4372.
  • Qiu H, Hudson ZM, Winnik MA, et al. Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles. Science. 2015;347(6228):1329–1332. doi:10.1126/science.1261816.
  • Jia L, Petretic A, Molev G, et al. Hierarchical polymer-carbon nanotube hybrid mesostructures by crystallization-driven self-assembly. ACS Nano. 2015;9(11):10673–10685. doi:10.1021/acsnano.5b01176.
  • Li X, Gao Y, Boott CE, et al. Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions. Nat Commun. 2015;6:8127. doi:10.1038/ncomms9127.
  • Khokhlov AR, Semenov AN. Liquid-crystalline ordering in the solution of long persistent chains. Physica A. 1981;108(2–3):546–556. doi:10.1016/0378-4371(81)90148-5.
  • Khokhlov AR, Semenov AN. Liquid-crystalline ordering in the solution of partially flexible macromolecules. Physica A. 1982;112:605–614. doi:10.1016/0378-4371(82)90199-6.
  • Hentschke R. Equation of state for persistent-flexible liquid-crystal polymers. Comparison with poly(γ-benzyl-L-glutamate) in dimethylformamide. Macromolecules. 1990;23(4):1192–1196. doi:10.1021/ma00206a043.
  • Odijk T. Theory of lyotropic polymer liquid crystals. Macromolecules. 1986;19(9):2313–2329. doi:10.1021/ma00163a001.
  • DuPré DB, Yang S. Liquid crystalline properties of solutions of persistent polymer chains. J Chem Phys. 1991;94(11):7466–7477. doi:10.1063/1.460177.
  • Chen ZY. Nematic ordering in semiflexible polymer chains. Macromolecules. 1993;26:3419–3423. doi:10.1021/ma00065a027.
  • Barry E, Beller D, Dogic Z. A model liquid crystalline system based on rodlike viruses with variable chirality and persistence length. Soft Matter. 2009;5(13). doi:10.1039/b822478a.
  • Dennison M, Dijkstra M, Van Roij R. Phase diagram and effective shape of semiflexible colloidal rods and biopolymers. Phys Rev Lett. 2011;106(20):208302. doi:10.1103/PhysRevLett.106.208302.
  • Hamley IW, Pedersen JS, Booth C, et al. A small-angle neutron scattering study of spherical and wormlike micelles formed by poly(oxyethylene)-based diblock copolymers. Langmuir. 2001;17(20):6386–6388. doi:10.1021/la010642f.
  • Bouchama F, Thathagar MB, Rothenberg G, et al. Self-assembly of a hexagonal phase of wormlike micelles containing metal nanoclusters. Langmuir. 2004;20(2): 477–483. doi:10.1021/la035148l.
  • Won Y. Giant wormlike rubber micelles. Science. 1999;283(5404):960–963. doi:10.1126/science.283.5404.960.
  • Jain S, Gong X, Scriven LE, et al. Disordered network state in hydrated block-copolymer surfactants. Phys Rev Lett. 2006;96(13):138304. doi:10.1103/PhysRevLett.96.138304.
  • Förster S, Berton B, Hentze H-P, et al. Lyotropic phase morphologies of amphiphilic block copolymers. Macromolecules. 2001;34(13):4610–4623. doi:10.1021/ma001923h.
  • Strey H, Wang J, Podgornik R, et al. Refusing to twist: demonstration of a line hexatic phase in DNA liquid crystals. Phys Rev Lett. 2000;84(14):3105–3108. doi:10.1103/PhysRevLett.84.3105.
  • López-Barrón CR, Wagner NJ. Structural transitions of CTAB micelles in a protic ionic liquid. Langmuir. 2012;28(35):12722–12730. doi:10.1021/la302231w.
  • Grelet E. Hexagonal order in crystalline and columnar phases of hard rods. Phys Rev Lett. 2008;100(16):168301. doi:10.1103/PhysRevLett.100.168301.
  • Ni Y, Rulkens R, Manners I. Transition metal-based polymers with controlled architectures: well-defined poly(ferrocenylsilane) homopolymers and multiblock copolymers via the living anionic ring-opening polymerization of silicon-bridged [1]Ferrocenophanes. J Am Chem Soc. 1996;118(17):4102–4114. doi:10.1021/ja953805t.
  • Qian J, Lu Y, Chia A, et al. Self-seeding in one dimension: a route to uniform fiber-like nanostructures from block copolymers with a crystallizable core-forming block. ACS Nano. 2013;7(5):3754–3766. doi:10.1021/nn400124x.
  • Hosemann R. Der ideale Parakristall und die von ihm gestreute kohärente Röntgenstrahlung. Z Phys. 1950;128(4):465–492. doi:10.1007/bf01330029.
  • Hosemann R. Röntgeninterferenzen an Stoffen mit flüssigkeitsstatistischen Gitterstörungen. Z Phys. 1950;128(1):1–35. doi:10.1007/bf01339555.
  • Hosemann R, Bagchi SN. Direct analysis of diffraction by matter. Series in physics. Amsterdam: North-Holland Publishing; 1962.
  • Briki F, Busson B, Doucet J. Organization of microfibrils in keratin fibers studied by X-ray scattering. Biochim Biophys Acta. 1998;1429(1):57–68. doi:10.1016/S0167-4838(98)00216-7.
  • Aeppli G, Bruinsma R. Hexatic order and liquid density fluctuations. Phys Rev Lett. 1984;53(22):2133–2136. doi:10.1103/PhysRevLett.53.2133.
  • Chou C. Multiple-step melting in two-dimensional hexatic liquid-crystal films. Science. 1998;280(5368):1424–1426. doi:10.1126/science.280.5368.1424.
  • Vaǐnshteǐn BK. Diffraction of X-rays by chain molecules. Chapter 5. Amsterdam: Elsevier; 1966.
  • Halperin BI, Nelson DR. Theory of two-dimensional melting. Phys Rev Lett. 1978;41(2):121–124. doi:10.1103/PhysRevLett.41.121.
  • Nelson DR, Halperin BI. Dislocation-mediated melting in two dimensions. Phys Rev B. 1979;19(5):2457–2484. doi:10.1103/PhysRevB.19.2457.
  • Birgeneau R, Litster J. Bond orientational order model for smectic B liquid crystals. J Phys Lett. 1978;39(21):399–402. doi:10.1051/jphyslet:019780039021039900.
  • Nounesis G, Huang CC, Goodby JW. Thermal-conductivity studies near the smectic- A -hexatic- B transition in a liquid-crystal compound. Phys Rev Lett. 1986;56(16):1712–1715. doi:10.1103/Phys-RevLett.56.1712.
  • Geer R, Stoebe T, Huang CC, et al. Liquid-hexatic phase transitions in single molecular layers of liquid-crystal films. Nature. 1992;355(6356):152–154. doi:10.1038/355152a0.
  • Martínez-Haya B, Cuetos A. Stability of nematic and smectic phases in rod-like mesogens with orientation−dependent attractive interactions. J Phys Chem B. 2007;111(28):8150–8157. doi:10.1021/jp0715171.
  • Chaikin PM, Lubensky TC. Principles of condensed matter physics. Cambridge: Cambridge University Press; 1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.