632
Views
41
CrossRef citations to date
0
Altmetric
Articles

Low-frequency relaxation modes in ferroelectric liquid crystal/gold nanoparticle dispersion: impact of nanoparticle shape

, , , &
Pages 1536-1547 | Received 27 Mar 2016, Accepted 03 May 2016, Published online: 23 May 2016

References

  • Lagerwall ST. Ferroelectric and antiferroelectric liquid crystals. Weinheim: Wiley; 2008.
  • Blinov LM, Pozhidaev EP, Podgornov FV, et al. Hysteresis inversion frequency for V-shape electrooptical switching controlled by dynamic impedance of ferroelectric SmC* phase. Ferroelectrics. 2002;277:3–11. doi:10.1080/00150190214448.
  • Yamashita T, Murakami Y, Furuta H, et al. Electro-optic characteristics of FLCDs exhibiting V-shaped and half-V-shaped switching fabricated using photoalignment. Proc SPIE. 2002;4658:40–50. doi:10.1117/12.467448.
  • Clark NA, Lagerwall ST. Submicrosecond bistable electro‐optic switching in liquid crystals. Appl Phys Let. 1980;36:899. doi:10.1063/1.91359.
  • Chen J, Cranton W. Handbook of visual display technology. Berlin: Springer; 2012.
  • Haase W, Suvorova A, Chernyaev I, et al. Light polarization modulation with ferroelectric liquid crystals. Integr Ferroelectrics. 2007;87:3–12. doi:10.1080/10584580601099124.
  • Lapanik V, Bezborodov V, Timofeev S, et al. Shock-free ferroelectric liquid crystal displays with high optical contrast. Appl Phys Lett. 2010;97:251913. doi:10.1063/1.3530444.
  • Lapanik V, Bezborodov V, Haase W, et al. Shock-free ferroelectric liquid crystal compositions: optimized chiral compounds and their mixing ratio with non-chiral components. Mol Cryst Liq Cryst. 2011;542:48/[570]–57. doi:10.1080/15421406.2011.569517.
  • Guo Q, Srivastava AK, Pozhidaev EP, et al. Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy. Appl Phys Exp. 2014;7:021701. doi:10.7567/APEX.7.021701.
  • Leuchtag HR, Bystrov VS. Theoretical models of conformational transitions and ion conduction in voltage-dependent ion channels: bioferroelectricity and superionic conduction. Ferroelectrics. 1999;220:157–204. doi:10.1080/00150199908216214.
  • Blinov LM, Palto SP, Podgornov FV, et al. Hysteresis-free electro-optical switching in conductive ferroelectric liquid crystals: experiments and modelling. Liq Cryst. 2004;31:61–70. doi:10.1080/02678290310001628528.
  • Garbovskiy YA, Glushchenko AV. Liquid crystalline colloids of nanoparticles: preparation, properties, and applications. Solid State Phys. 2011;62:1–74.
  • Gardner DF, Evans JS, Smalyukh II. Towards reconfigurable optical metamaterials. Mol Cryst Liq Cryst. 2011;545:1227–1245. doi:10.1080/15421406.2011.571966.
  • Qi H, Hegmann T. Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays. J of Mat Chem. 2008;18:3288–3294. doi:10.1039/b718920f.
  • Praca F, Medina W, Petrilli R, et al. Liquid crystal nanodispersions enable the cutaneous delivery of photosensitizer for topical PDT: fluorescence microscopy study of skin penetration. Curr Nanosci. 2012;8:535–540. doi:10.2174/157341312801784203.
  • Qi H, Hegmann T. Liquid crystal-gold nanoparticle composites. Liquid Crystals Today. 2011;20:102–114. doi:10.1080/1358314X.2011.610133.
  • Marx VM, Girgis H, Heiney PA, et al. Bent-core liquid crystal (LC) decorated gold nanoclusters: synthesis, self-assembly, and effects in mixtures with bent-core LC hosts. J of Mat Chem. 2008;18:2983–2994. doi:10.1039/b802554a.
  • Evans JS, Beier CN, Smalyukh II. Alignment of high-aspect ratio colloidal gold nanoplatelets in nematic liquid crystals. J of Appl Phys. 2011;110:033535. doi:10.1063/1.3620550.
  • Liu Q, Cui Y, Gardner D, et al. Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. Nano Lett. 2010;10:1347–1353. doi:10.1021/nl9042104.
  • Pratibha R, Park W, Smalyukh II. Colloidal gold nanoparticle dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films. J of Appl Phys. 2010;107:063511. doi:10.1063/1.3330678.
  • Hsu LH, Lo KY, Huang SA, et al. Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals. Appl Phys Lett. 2008;92:181112. doi:10.1063/1.2926658.
  • Peroukidis SD, Yannopapas V, Vanakaras AG, et al. Plasmonic response of ordered arrays of gold nanorods immersed within a nematic liquid crystal. Liq Cryst. 2014;41:1430–1435. doi:10.1080/02678292.2014.923538.
  • Piryatinski YP, Vakhnin AY, Verbitskii AB, et al. Fluorescence properties of a composite material based on the 5CB nematic liquid crystal with gold nanoparticles. Phys of Solid State. 2011;53:2333–2338. doi:10.1134/S1063783411110242.
  • Kumar A, Prakash J, Mehta DS, et al. Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals. Appl Phys Lett. 2009;95:023117. doi:10.1063/1.3179577.
  • Meli MV, Lardner MJ, Taweel AM. Effects of gold nanoparticle film morphology on the alignment of a nematic liquid crystal. Liq Cryst. 2015;42:497–505. doi:10.1080/02678292.2014.1002548.
  • Mishra M, Dabrowski RS, Vij JK, et al. Electrical and electro-optical parameters of 4 ‘-octyl-4-cyanobiphenyl nematic liquid crystal dispersed with gold and silver nanoparticles. Liq Cryst. 2015;42:1580–1590.
  • Vardanyan KK, Thiel A, Fickas B, et al. Multicomponent nematic systems with doped gold nanoparticles. Liq Cryst. 2015;42:445–455. doi:10.1080/02678292.2014.996793.
  • Qi H, Kinkead B, Hegmann T. Effects of functionalized metal and semiconductor nanoparticles in nematic liquid crystals. Adv Funct Mater. 2008;18:212–221. doi:10.1002/adfm.200701327.
  • Kaur S, Singh SP, Biradar AM, et al. Enhanced electro-optical properties in gold nanoparticles doped ferroelectric liquid crystals. Appl Phys Lett. 2007;91:023120. doi:10.1063/1.2756136.
  • Prakash J, Choudhary A, Kumar A, et al. Nonvolatile memory effect based on gold nanoparticles doped ferroelectric liquid crystal. Appl Phys Lett. 2008;93:112904. doi:10.1063/1.2980037.
  • Blinov LM, Palto SP, Pozhidaev EP, et al. High frequency hysteresis-free switching in thin layers of smectic-C* ferroelectric liquid crystals. Phys Rev E. 2005;71:051715. doi:10.1103/PhysRevE.71.051715.
  • Supreet PR, Kumar S, Raina KK. Effect of dispersion of gold nanoparticles on the optical and electrical properties of discotic liquid crystal. Liq Cryst. 2014;41:933–939. doi:10.1080/02678292.2014.893032.
  • Inam M, Singh G, Biradar AM, et al. Effect of gold nanoparticles on switch-on voltage and relaxation frequency of nematic liquid crystal cell. AIP Adv. 2011;1:042162. doi:10.1063/1.3668125.
  • Podgornov FV, Ryzhkova AV, Haase W. Influence of gold nanorods size on electro-optical and dielectric properties of ferroelectric liquid crystals. Appl Phys Lett. 2010;97:212903. doi:10.1063/1.3517486.
  • Lapanik A, Rudzki A, Kinkead B, et al. Electrooptical and dielectric properties of alkylthiol-capped gold nanoparticle–ferroelectric liquid crystal nanocomposites: influence of chain length and tethered liquid crystal functional groups. Soft Matt. 2012;8:8722–8728. doi:10.1039/c2sm25991e.
  • Popova EV, Gamzaeva SA, Krivoshey AI, et al. Dielectric properties of magnetic nanoparticles’ suspension in a ferroelectric liquid crystal. Liq Cryst. 2015;42:334–343. doi:10.1080/02678292.2014.988763.
  • Joshi T, Kumar A, Prakash J, et al. Low frequency dielectric relaxations of gold nanoparticles/ferroelectric liquid crystal composites. Liq Cryst. 2010;37:1433–1438. doi:10.1080/02678292.2010.520747.
  • Mandal P, Lapanik A, Wipf R, et al. Sub-Hertz relaxation process in chiral smectic mixtures doped with silver nanoparticles. Appl Phys Lett. 2012;100:073112. doi:10.1063/1.3685700.
  • Urbanski M, Lagerwall JPF. Nanoparticles dispersed in liquid crystals: impact on conductivity, low-frequency relaxation and electrooptical performance. J Mater Chem C. 2016;4:3485–3491. doi:10.1039/C6TC00659K.
  • Senyuk B, Evans JS, Ackerman PJ, et al. Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals. Nano Lett. 2012;12:955–963. doi:10.1021/nl204030t.
  • Cordoyiannis G, Gyergyek S, Rozic B, et al. The effect of magnetic nanoparticles upon the smectic-A to smectic-C* phase transition. Liq Cryst. 2016;43:314–319.
  • Palto SP, Podgornov FV, Haase W, et al. Modeling electrooptical effects in ferroelectric liquid crystals: 1. basic equations and experimental tests. Mol Cryst Liq Cryst. 2004;410:95–104. doi:10.1080/15421400490436133.
  • Blinov LM, Palto SP, Pozhidaev EP, et al. Modeling electrooptical effects in Ferroelectric Liquid Crystals. 2. V-Shape Switching in the SmC* phase. Mol Cryst Liq Cryst. 2004;410:105–115. doi:10.1080/15421400490436142.
  • Jonscher AK. The universal dielectric response. Nature. 1977;92:673–679. doi:10.1038/267673a0.
  • Garbovskiy Y, Glushchenko I. Nano-objects and ions in liquid crystals: ion trapping effect and related phenomena. Crystals. 2015;5:501–533. doi:10.3390/cryst5040501.
  • Zhao K, Asaka K, Sekine K, et al. Dielectric relaxation due to the interfacial polarization in bilamellar structure. Bull Inst Chem Res. 1988;66:540–553.
  • Kremer F, Schönhals A. Broadband dielectric spectroscopy. Heidelberg, Berlin: Springer Verlag; 2003.
  • Jones TB. Electromechanics of particles. Cambridge: Cambridge: Cambridge University Press; 1995.
  • Schwan HP, Takashima S. Dielectric behavior of biological cells and membranes. Bull Inst Chem Res. 1991;69:459–475.
  • Klein RJ, Zhang S, Dou S, et al. Modeling electrode polarization in dielectric spectroscopy: ion mobility and mobile ion concentration of single-ion polymer electrolytes. J of Chem Phys. 2006;124:144903. doi:10.1063/1.2186638.
  • Schwarz GJ. Theory of the low-frequency dielectric response of colloidal particles in electrolyte solution. J of Phys Chem. 1962;66:2636–2642. doi:10.1021/j100818a067.
  • Takashima S. Electrical properties of biopolymers and membranes. Philadelphia: Adam Hilger Publisher; 1989.
  • Malaescu I, Marin CN. Dependence on the temperature of the activation energy in the dielectric relaxation processes for ferrofluids in low-frequency field. J Magn Magn Mater. 2002;252:68–70. doi:10.1016/S0304-8853(02)00663-7.
  • Haber LH, Kwok SJ, Semeraro M, et al. Probing the colloidal gold nanoparticle/aqueous interface with second harmonic generation. Chem Phys Lett. 2011;507:11–14. doi:10.1016/j.cplett.2011.03.042.
  • Lyklema J, Dukhin SS, Shilov VN. The relaxation of the double layer around colloidal particles and the low-frequency dielectric dispersion: part 1 theoretical considerations. J Electroanalyt Chem. 1983;143:1–21. doi:10.1016/S0022-0728(83)80251-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.