780
Views
42
CrossRef citations to date
0
Altmetric
Invited Article

Beam shaping via photopatterned liquid crystals

, &
Pages 2051-2061 | Received 20 Apr 2016, Published online: 02 Jun 2016

References

  • Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum. Laser Photonics Rev. 2008;2:299–313. doi:10.1002/lpor.200810007.
  • Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics. 2011;3:161–204. doi:10.1364/AOP.3.000161.
  • Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photonics. 2009;1:1–57. doi:10.1364/AOP.1.000001.
  • Siviloglou G, Broky J, Dogariu A, et al. Observation of accelerating Airy beams. Phys Rev Lett. 2007;99:213901. doi:10.1103/PhysRevLett.99.213901.
  • Allen L, Beijersbergen MW, Spreeuw R, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992;45:8185–8189. doi:10.1103/PhysRevA.45.8185.
  • Yalizay B, Soylu B, Akturk S. Optical element for generation of accelerating Airy beams. J Opt Soc Am A. 2010;27:2344–2346. doi:10.1364/JOSAA.27.002344.
  • Beijersbergen M, Coerwinkel R, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate. Opt Commun. 1994;112:321–327. doi:10.1016/0030-4018(94)90638-6.
  • Machavariani G, Lumer Y, Moshe I, et al. Efficient extracavity generation of radially and azimuthally polarized beams. Opt Lett. 2007;32:1468–1470. doi:10.1364/OL.32.001468.
  • Polynkin P, Kolesik M, Moloney JV, et al. Curved plasma channel generation using ultraintense Airy beams. Science. 2009;324:229–232. doi:10.1126/science.1169544.
  • Cao R, Yang Y, Wang J, et al. Microfabricated continuous cubic phase plate induced Airy beams for optical manipulation with high power efficiency. Appl Phys Lett. 2011;99:261106. doi:10.1063/1.3672210.
  • Lei T, Zhang M, Li Y, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci Appl. 2015;4:e257. doi:10.1038/lsa.2015.30.
  • Yu N, Capasso F. Flat optics with designer metasurfaces. Nature Mater. 2014;13:139–150. doi:10.1038/nmat3839.
  • Yulevich I, Maguid E, Shitrit N, et al. Optical mode control by geometric phase in quasicrystal metasurface. Phys Rev Lett. 2015;115:205501. doi:10.1103/PhysRevLett.115.205501.
  • Zhou J, Liu Y, Ke Y, et al. Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases. Opt Lett. 2015;40:3193–3196. doi:10.1364/OL.40.003193.
  • Yang DK, Wu ST. Fundamentals of liquid crystal devices. England: John Wiley & Sons; 2006.
  • Schadt M. Nematic liquid crystals and twisted-nematic LCDs. Liq Cryst. 2015;42:646–652.
  • Kitzerow H-S. Polymer-dispersed liquid crystals from the nematic curvilinear aligned phase to ferroelectric films. Liq Cryst. 1994;16:1–31. doi:10.1080/02678299408036517.
  • Ren HW, Lin Y-H, Wu S-T. Linear to axial or radial polarization conversion using a liquid crystal gel. Appl Phys Lett. 2006;89:051114. doi:10.1063/1.2335589.
  • Luo D, Dai H, Sun X. Polarization-independent electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystal. Opt Express. 2013;21:31318–31323. doi:10.1364/OE.21.031318.
  • Ge S-J, Ji W, Cui G-X, et al. Fast switchable optical vortex generator based on blue phase liquid crystal fork grating. Opt Mater Express. 2014;4:2535–2541. doi:10.1364/OME.4.002535.
  • Ngcobo S, Litvin I, Burger L, et al. A digital laser for on-demand laser modes. Nature Commun. 2013;4:2289. doi:10.1038/ncomms3289.
  • Kim J-H, Yoneya M, Yokoyama H. Tristable nematic liquid-crystal device using micropatterned surface alignment. Nature. 2002;420:159–162. doi:10.1038/nature01163.
  • Wen B, Petschek RG, Rosenblatt C. Nematic liquid-crystal polarization gratings by modification of surface alignment. Appl Opt. 2002;41:1246–1250. doi:10.1364/AO.41.001246.
  • Honma M, Nose T. Polarization-independent liquid crystal grating fabricated by microrubbing process. Jpn J Appl Phys. 2003;42:6992–6997. doi:10.1143/JJAP.42.6992.
  • Chen J, Bos PJ, Vithana H, et al. An electro-optically controlled liquid crystal diffraction grating. Appl Phys Lett. 1995;67:2588–2590. doi:10.1063/1.115140.
  • Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Opt Lett. 1996;21:1948–1950. doi:10.1364/OL.21.001948.
  • Schadt M, Schmitt K, Kozinkov V, et al. Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers. Jpn J Appl Phys. 1992;31:2155–2164. doi:10.1143/JJAP.31.2155.
  • Schadt M, Seiberle H, Schuster A. Optical patterning of multi-domain liquid-crystal displays with wide viewing angles. Nature. 1996;381:212–215. doi:10.1038/381212a0.
  • Hu W, Srivastava AK, Lin X-W, et al. Polarization independent liquid crystal gratings based on orthogonal photoalignments. Appl Phys Lett. 2012;100:111116. doi:10.1063/1.3694921.
  • Blinov L, Barberi R, Cipparrone G, et al. Liquid crystal orientation by holographic phase gratings recorded on photosensitive Langmuir-Blodgett films. Liq Cryst. 1999;26:427–436. doi:10.1080/026782999205209.
  • Provenzano C, Pagliusi P, Cipparrone G. Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces. Appl Phys Lett. 2006;89:121105. doi:10.1063/1.2355456.
  • Li Y, Kim J, Escuti MJ. Orbital angular momentum generation and mode transformation with high efficiency using forked polarization gratings. Appl Opt. 2012;51:8236–8245. doi:10.1364/AO.51.008236.
  • Nersisyan SR, Tabiryan NV, Steeves DM, et al. The promise of diffractive waveplates. Opt Photonics News. 2010;21:40–45. doi:10.1364/OPN.21.3.000040.
  • Culbreath C, Glazar N, Yokoyama H. Note: automated maskless micro-multidomain photoalignment. Rev Sci Instrum. 2011;82:126107. doi:10.1063/1.3669528.
  • Wu H, Hu W, Hu H-C, et al. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system. Opt Express. 2012;20:16684–16689. doi:10.1364/OE.20.016684.
  • Miskiewicz MN, Escuti MJ. Direct-writing of complex liquid crystal patterns. Opt Express. 2014;22:12691–12706. doi:10.1364/OE.22.012691.
  • Akiyama H, Kawara T, Takada H, et al. Synthesis and properties of azo dye aligning layers for liquid crystal cells. Liq Cryst. 2002;29:1321–1327. doi:10.1080/713935610.
  • Chigrinov V, Pikin S, Verevochnikov A, et al. Diffusion model of photoaligning in azo-dye layers. Phys Rev E. 2004;69:061713. doi:10.1103/PhysRevE.69.061713.
  • Wei B-Y, Hu W, Ming Y, et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals. Adv Mater. 2014;26:1590–1595. doi:10.1002/adma.201305198.
  • Lin X-W, Hu W, Hu X-K, et al. Fast response dual-frequency liquid crystal switch with photo-patterned alignments. Opt Lett. 2012;37:3627–3629. doi:10.1364/OL.37.003627.
  • Berry MV. The adiabatic phase and Pancharatnam’s phase for polarized light. J Mod Opt. 1987;34:1401–1407. doi:10.1080/09500348714551321.
  • Chen P, Wei BY, Ji W, et al. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings. Photonics Res. 2015;3:133–139. doi:10.1364/PRJ.3.000133.
  • Nersisyan S, Tabiryan N, Steeves D, et al. Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching. J Nonlinear Opt Phys Mater. 2009;18:1–47. doi:10.1142/S0218863509004555.
  • Du T, Fan F, Tam AMW, et al. Complex nanoscale-ordered liquid crystal polymer film for high transmittance holographic polarizer. Adv Mater. 2015;27:7191–7195. doi:10.1002/adma.201502395.
  • Duan W, Chen P, Wei B-Y, et al. Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating. Opt Mater Express. 2016;6:597–602. doi:10.1364/OME.6.000597.
  • Chen H, Weng Y, Xu D, et al. Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate. Opt Express. 2016;24:7287–7298. doi:10.1364/OE.24.007287.
  • Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys Rev Lett. 2006;96:163905. doi:10.1103/PhysRevLett.96.163905.
  • Slussarenko S, Murauski A, Du T, et al. Tunable liquid crystal q-plates with arbitrary topological charge. Opt Express. 2011;19:4085–4090. doi:10.1364/OE.19.004085.
  • Nersisyan SR, Tabiryan NV, Mawet D, et al. Improving vector vortex waveplates for high-contrast coronagraphy. Opt Express. 2013;21:8205–8213. doi:10.1364/OE.21.008205.
  • Tabirian N, Xianyu H, Serabyn E. Liquid crystal polymer vector vortex waveplates with sub-micrometer singularity. In: Proceedings of 2015 IEEE Aerospace Conference; 2015 Mar 7; Big Sky, Montana. doi:10.1109/AERO.2015.7119168.
  • Ji W, Lee C-H, Chen P, et al. Meta-q-plate for complex beam shaping. Sci Rep. 2016;6:25528. doi:10.1038/srep25528.
  • Liu J, Min C, Lei T, et al. Generation and detection of broadband multi-channel orbital angular momentum by micrometer-scale meta-reflectarray. Opt Express. 2016;24:212–218. doi:10.1364/OE.24.000212.
  • Ge S-J, Chen P, Ma L-L, et al. Optical array generator based on blue phase liquid crystal Dammann grating. Opt Mater Express. 2016;6:1087–1092. doi:10.1364/OME.6.001087.
  • Chen P, Ge S-J, Ma L-L, et al. Generation of equal-energy orbital angular momentum beams via photopatterned liquid crystals. Phys Rev Appl. 2016;5:044009. doi:10.1103/PhysRevApplied.5.044009.
  • Chen P, Ji W, Wei B-Y, et al. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates. Appl Phys Lett. 2015;107:241102. doi:10.1063/1.4937592.
  • Ko S-W, Ting C-L, Fuh AY-G, et al. Polarization converters based on axially symmetric twisted nematic liquid crystal. Opt Express. 2010;18:3601–3607. doi:10.1364/OE.18.003601.
  • Naidoo D, Roux F, Dudley A, et al. Controlled generation of higher-order Poincare sphere beams from a laser. Nature Photonics. 2016;10:327–332. doi:10.1038/nphoton.2016.37.
  • Wei B-Y, Chen P, Hu W, et al. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask. Sci Rep. 2015;5:17484. doi:10.1038/srep17484.
  • Wu S-T. Birefringence dispersions of liquid crystals. Phys Rev A. 1986;33:1270–1274. doi:10.1103/PhysRevA.33.1270.
  • Wang L, Lin X-W, Liang X, et al. Large birefringence liquid crystal material in terahertz range. Opt Mater Express. 2012;2:1314–1319. doi:10.1364/OME.2.001314.
  • Srivastava A, Hu W, Chigrinov VG, et al. Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals. Appl Phys Lett. 2012;101:031112. doi:10.1063/1.4737642.
  • Ma Y, Wei B, Shi L, et al. Fork gratings based on ferroelectric liquid crystals. Opt Express. 2016;24:5822–5828. doi:10.1364/OE.24.005822.
  • Ma LL, Li SS, Li WS, et al. Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals. Adv Opt Mater. 2015;3:1691–1696. doi:10.1002/adom.201500403.
  • Wei BY, Chen P, Ge SJ, et al. Liquid crystal depolarizer based on photoalignment technology. Photonics Res. 2016;4:70–73. doi:10.1364/PRJ.4.000070.
  • Wang L, Lin XW, Hu W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci Appl. 2015;4:e253. doi:10.1038/lsa.2015.26.
  • Niv A, Biener G, Kleiner V, et al. Manipulation of the Pancharatnam phase in vectorial vortices. Opt Express. 2006;14:4208–4220. doi:10.1364/OE.14.004208.
  • Beresna M, Gecevičius M, Kazansky PG, et al. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl Phys Lett. 2011;98:201101. doi:10.1063/1.3590716.
  • Kim J, Li Y, Miskiewicz MN, et al. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica. 2015;2:958–964. doi:10.1364/OPTICA.2.000958.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.