902
Views
55
CrossRef citations to date
0
Altmetric
Invited Article

Thin films of discotic liquid crystals and their applications

, , &
Pages 2079-2091 | Received 08 May 2016, Accepted 25 May 2016, Published online: 08 Jun 2016

References

  • Chandrasekhar S, Sadashiva BK, Suresh KA. Liquid crystals of disc-like molecules. Pramana. 1977;9:471–480. doi:10.1007/BF02846252.
  • Kumar S. Chemistry of discotic liquid crystal: from monomers to polymers. Boca Raton (FL): CRC Press; 2011.
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36:1902–1929. doi:10.1039/b417320c.
  • Kumar S. Discotic liquid crystal-nanoparticle hybrid systems. Asia Mater. 2014;6:e82. doi:10.1038/am.2013.75.
  • Kumar S. Nanoparticles in the supramolecular order of discotic liquid crystals. Liq Cryst. 2014;41:353–367. doi:10.1080/02678292.2013.824122.
  • Vijayaraghavan D, Kumar S. Self-assembled superlattices of gold nanoparticles in a discotic liquid Crystal. Mol Cryst Liq Cryst. 2009;508:101–114. doi:10.1080/15421400903060219.
  • Kumar S, Pal SK, Kumar PS, et al. Novel conducting nanocomposites: synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix. Soft Matter. 2007;3:896–900. doi:10.1039/b701380a.
  • Lili H, Donghuan Q, Xi J, et al. Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells. Nanotechnology. 2006;17:4736–4742. doi:10.1088/0957-4484/17/18/035.
  • Chattopadhyay B, Ruzie C, Resel R, et al. Substrate induced phases: transition from liquid crystalline to a plastic crystalline phase via nucleation initiated by the substrate. Liq Cryst. 2014;41:302–309. doi:10.1080/02678292.2013.809799.
  • Umesh CP, Marcelis ATM, Zuilhof H. Fluorine-containing tryphenylenes. Liquid crystalline properties and surface ordering. Liq Cryst. 2014;41:1911–1922. doi:10.1080/02678292.2014.960490.
  • Roberts G. Langmuir-Blodgett films. New York (NY): Plenum Press; 1990.
  • Gaines GL. Insoluble monolayers at liquid-gas interface. New York (NY): Interscience; 1966.
  • Kaganer VM, Mohwald H, Dutta P. Structure and phase transitions in Langmuir monolayers. Rev Mod Phys. 1999;71:779–820. doi:10.1103/RevModPhys.71.779.
  • Gidalevitz D, Mindyuk OY, Heiney PA, et al. Structure of discotic liquid crystalline compounds at the air-water interface. J Phys Chem B. 1997;101:10870–10875. doi:10.1021/jp972678f.
  • Mindyuk OY, Heiney PA. Structural studies of Langmuir films of disc-shaped molecules. Adv Mater. 1999;11:341–344. doi:10.1002/(ISSN)1521-4095.
  • Maliszewskyj NC, Heiney PA, Josefowicz JY, et al. Structure of Langmuir-Blodgett films of star-shaped oligomeric discogens. Langmuir. 1995;11:1666–1674. doi:10.1021/la00005a040.
  • Nayak A, Suresh KA, Pal SK, et al. Films of novel mesogenic molecules at air-water and air-solid interfaces. J Phys Chem B. 2007;111:11157–11161. doi:10.1021/jp073196z.
  • Boden N, Bushby RJ, Clements J, et al. One dimensional electronic conductivity in discotic liquid crystals. Chem Phys Lett. 1988;152:94–99. doi:10.1016/0009-2614(88)87334-2.
  • Boden N, Bushby RJ, Clements J. Mechanism of quasi-one-dimensional electronic conductivity in discotic liquid crystals. J Chem Phys. 1993;98:5920–5931. doi:10.1063/1.464886.
  • Valentin CD, Pacchioni G, Selloni A. Reduced and n-type doped TiO2: nature of Ti3+ species. J Phys Chem C. 2009;113:20543–20552. doi:10.1021/jp9061797.
  • Kalina DW, Crane SW. Langmuir-Blodgett films of soluble copper octa(dodecoxmethyl) phthalocyanine. Thin Solid Films. 1985;134:109–119. doi:10.1016/0040-6090(85)90123-3.
  • Rondelez F, Koppel D, Sadashiva BK. Two-dimensional films of discotic molecules at an air-water interface. J Phys (Paris). 1982;43:1371–1377. doi:10.1051/jphys:019820043090137100.
  • Maliszewskyj NC, Heiney PA, Blasie JK, et al. Self-organization of discogenic molecules at the air-water interface. J Phys II (Paris). 1992;2:75–86.
  • Mertesdorf C, Ringsdorf H. Self-organization of substituted azacrowns based on their discoid and amphiphilic nature. Liq Cryst. 1989;5:1757–1772. doi:10.1080/02678298908045686.
  • Malthete J, Poupinet D, Vilanove R, et al. Monolayers of macrocylic polymides at the air-water interface. J Chem Soc Chem Commun. 1989;1016–1019. doi:10.1039/C39890001016.
  • Janietz D, Hoffmann D, Reiche J. Molecular organization of amphiphilic disc-shaped penta-alkynes in LB-mono-and multilayers. Thin Solid Films. 1994;244:794–798. doi:10.1016/0040-6090(94)90573-8.
  • Gupta RK, Manjuladevi V, Karthik C, et al. Studies on Langmuir monolayer of tricyloquinazoline based disk-shaped liquid crystal molecules. Colloids and Surfaces A. 2012;410:91–97. doi:10.1016/j.colsurfa.2012.06.023.
  • Boden N, Borner RC, Bushby RJ, et al. First observation of an n-doped quasi-one dimensional electronically-conducting discotic liquid crystal. J Am Chem Soc. 1994;116:10807–10808. doi:10.1021/ja00102a065.
  • Kumar S, Rao DSS, Prasad SK. New branched chain tricycloquinazoline derivatives: a room temperature electron deficient discotic system. J Mater Chem. 1999;9:2751–2754. doi:10.1039/a904405a.
  • Yamaguchi H, Akimoto Y, Ikeda T, et al. Magnetic circular dichroism spectra and photoelectron spectra of tricycloquinazoline. J Chem Soc Faraday Trans II. 1979;75:1506–1514. doi:10.1039/f29797501506.
  • Cundall RB, Grant DJW, Shulman NH. Photophysics of 4a,5,10,15-tera-azabenzo [a]naphtha [1,2,3-de] anthracene (NTCQ,the ring-nitrogen isostere of tricycloquinazoline). J Chem Soc Faraday Trans II. 1982;78:27–37. doi:10.1039/f29827800027.
  • Cundall RB, Grant DJW, Shulman NH. Photophysics of 5,10,14c,15-tetra-azabenzo[a]naphth[1,2,3-de]anthracene (tricycloquinazoline, TCQ) and some of its derivatives. J Chem Soc Faraday Trans II. 1982;78:737–750. doi:10.1039/f29827800737.
  • Leupin W, Magde D, Persy G, et al. 1,4,7-Triazacycl[3.3.3]azine: basicity, photoelectron spectrum, photophysical properties. J Am Chem Soc. 1986;108:17–22. doi:10.1021/ja00261a004.
  • Nagata C, Kodama M, Imamura A, et al. Interaction of tricycloquinazoline and its analog with DNA. GANN. 1966;57:75–84.
  • Riviere S, Henon S, Meunier J, et al. Textures and phase transitions in langmuir monolayers of fatty acids: a comparative brewster angle microscope and polarized fluorescence microscope study. J Chem Phys. 1994;101:10045–10051. doi:10.1063/1.467993.
  • Gupta RK, Suresh KA, Kumar S, et al. Spatiotemporal patterns in a Langmuir monolayer due to driven molecular precession. Phys Rev E. 2008;78:041703. doi:10.1103/PhysRevE.78.041703.
  • Karthik C, Manjuladevi V, Gupta RK, et al. Pattern formation in Langmuir-Blodgett films of tricycloquinazoline based discotic liquid crystal molecules. J Mol Struct. 2014;1070:52–57. doi:10.1016/j.molstruc.2014.04.036.
  • Gupta RK, Manjuladevi V, Karthik C, et al. Studies on ultrathin films of tricycloquinazoline (TCQ) based discotic liquid crystal molecules. J Phys Conf Ser. 2013;417:012068. doi:10.1088/1742-6596/417/1/012068.
  • Gupta RK, Manjuladevi V. Molecular interactions at interfaces in molecular interactions. Aurelia Meghea. Molecular Interactions. Croatia: Intech; 2012. p.81–105. ISBN:978-953-51-0079-9.
  • Karthik C, Manjuladevi V, Gupta RK. Langmuir monolayer assisted formation of cadmium sulfide nanopartcles at air-water interface and its role in alignment of bulk liquid crystal. RSC Adv. 2016;6:46607–46615. doi:10.1039/C6RA01753C.
  • Wang J, Qiu L, Jakli A, et al. Inverse Langmuir-Schaefer films of bent-core molecules. Liq Cryst. 2010;37:1229–1226. doi:10.1080/02678292.2010.494739.
  • Fang JY, Gehlert U, Sashidhar R, et al. Imaging the azimuthal tilt order in monolayers by liquid crystal optical amplification. Langmuir. 1999;15:297–299. doi:10.1021/la9812929.
  • Collins J, Funfschilling D, Dennin M. Langmuir Blodgett films of arachidic acid and a nematic liquid crystal: characterization and use in homeotropic alignment. Thin Solid Films. 2006;496:601–605. doi:10.1016/j.tsf.2005.09.087.
  • Iglesias W, Smith TJ, Basnet PB, et al. Alignment by Langmuir/Schaefer monolayers of bent-core liquid crystals. Soft Matter. 2011;7:9043–9050. doi:10.1039/c1sm05546a.
  • Bushby RJ, Katawa K. Liquid crystals that affected the world: discotic liquid crystals. Liq Cryst. 2011;38:1415–1426. doi:10.1080/02678292.2011.603262.
  • Pisula W, Menon A, Stepputat M, et al. A zone-casting technique foe device fabrication of field-effect transistors based discotic hexa-per-hexabenzocoronene. Adv Mater. 2005;17:684–689. doi:10.1002/adma.200401171.
  • Eichhorn SH, Adavelli A, Li HS, et al. Alignment of Discotic liquid crystals. Mol Cryst Liq Cryst. 2003;397:47–58. doi:10.1080/15421400390213708.
  • Eichhorn SH, Bruce DW, Guillon D, et al. Metal ion mediated mesomorphism and thin film behavior of amphitropic tetraazaporphyrin complexes. J Mater Chem. 2001;11:1576–1584. doi:10.1039/b100112o.
  • Seguy I, Destruel P, Bock H. An all-columnar bilayer light-emitting diode. Synth Met. 2000;111:15–18. doi:10.1016/S0379-6779(99)00405-1.
  • Seguy I, Jolinat P, Destruel P, et al. Red organic light emitting device made from triphenylene hexaester and perylene tetraeste. J Appl Phys. 2001;89:5442–5448. doi:10.1063/1.1365059.
  • Hassheider T, Benning SA, Kitzerow HS, et al. Color-tuned electroluminescence from columnar liquid crystalline alkyl Arenecarboxylates. Angew Chem Inter Edn. 2001;40:2060–2063. doi:10.1002/1521-3773(20010601)40:11<2060::AID-ANIE2060>3.0.CO;2-H.
  • Schmidt-Mende L, Fechtenkotter A, Mullen K, et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science. 2001;293:1119–1122. doi:10.1126/science.293.5532.1119.
  • Schmidt-Mende L, Fechtenkotter A, Mullen K, et al. Efficient organic photovoltaics from soluble discotic liquid crystalline materials. Physica E. 2002;14:263–267. doi:10.1016/S1386-9477(02)00400-9.
  • Clements J, Boden N, Gibson TD, et al. Novel, self-organising materials for use in gas sensor arrays: beating the humidity problem. Sens Actuators B Chem. 1998;47:37–42. doi:10.1016/S0925-4005(98)00005-7.
  • Dunbar ADF, Richardson TH, McNaughton AJ, et al. Investigation of free base, Mg, Sn, and Zn substituted porphyrin LB films as gas sensors for organic analytes. J Phys Chem B. 2006;110:16646–16651. doi:10.1021/jp0626059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.