1,059
Views
60
CrossRef citations to date
0
Altmetric
Invited Article

Self-activating liquid crystal devices for smart laser protection

Pages 2062-2078 | Received 30 Apr 2016, Published online: 16 Jun 2016

References

  • Silfvast WT. Laser fundamentals. Cambridge (UK): Cambridge University Press; 2004.
  • Maiman TH. Stimulated optical radiation in ruby. Nature. 1960;187:493–494.
  • Hitz CB, Ewing JJ, Hecht J. Introduction to laser technology. Hoboken (NJ): John Wiley & Sons; 2012.
  • Miller MJ, Mott AG, Ketchel BP. General optical limiting requirements. Proc SPIE. 1998;3472:24–29.
  • Sarkar A, Rayfield G Laser protection polymeric materials. United States patent US 8,709,307.
  • Witt F Laser protection goggles. United States patent US 4,462,661.
  • Harvie MR Active laser protection system. United States patent US 7,202,852.
  • Svensson S, Björkert S, Kariis H, et al. Countering laser pointer threats to road safety. Proc SPIE. 2006;6402:640207.
  • Webb CE, Jones JD. Handbook of laser technology and applications. London: CRC Press; 2004.
  • Peng F, Lee YH, Luo Z, et al. Low voltage blue phase liquid crystal for spatial light modulators. Opt Lett. 2015;40:5097–5100.
  • Peng F, Xu D, Chen H, et al. A low voltage polymer network liquid crystal for infrared spatial light modulators. Opt Express. 2015;23:2361–2368.
  • Efron U, Wu ST, Bates TD. Nematic liquid crystals for spatial light modulators: recent studies. J Opt Soc Am B. 1986;3:247–252.
  • Sun J, Wu ST. Recent advances in polymer network liquid crystal spatial light modulators. J Polym Sci B Polym Phys. 2014;52:183–192.
  • Sun J, Wu ST, Haseba Y. A low voltage submillisecond-response polymer network liquid crystal spatial light modulator. Appl Phys Lett. 2014;104:023305.
  • Ritt G, Eberle B. Sensor protection against laser dazzling. Proc SPIE. 2010;7834:783404.
  • Savage N. Digital spatial light modulators. Nat Photonics. 2009;3:170–172.
  • Xie H, Wang L, Wang H, et al. Electrically tunable properties of wideband-absorptive and reflection-selective films based on multi-dichroic dye-doped cholesteric liquid crystals. Liq Cryst. 2015;42:1698–16705.
  • Yang DK, Wu ST. Tunable liquid crystal photonic devices. In: Fundamentals of liquid crystal devices. Chichester (UK): John Wiley & Sons. 2014. p. 347–374.
  • Tutt LW, Boggess TF. A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials. Prog Quant Electr. 1993;17:299–338.
  • Mamidala V. Optical limiting properties of novel nanocomposites [ Ph. D thesis]. Singapore: National University of Singapore; 2012.
  • Wang J, Blau WJ. Inorganic and hybrid nanostructures for optical limiting. J Opt A: Pure Appl Opt. 2009;11:024001.
  • Hollins RC. Materials for optical limiters. Curr Opin Solid State Mater Sci. 1999;4:189–196.
  • Sun YP, Riggs JE, Henbest KB, et al. Nanomaterials as optical limiters. J Nonlinear Opt Phys Mater. 2000;9:481–503.
  • Spangler C. Recent development in the design of organic materials for optical power limiting. J Mater Chem. 1999;9:2013–2020.
  • Zhou GJ, Wong WY. Organometallic acetylides of Pt II, Au I and Hg II as new generation optical power limiting materials. Chem Soc Rev. 2011;40:2541–2566.
  • O’Flaherty SM, Hold SV, Cook MJ, et al. Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics. Adv Mater. 2003;15:19–32.
  • de la Torre G, Vázquez P, Agullo-Lopez F, et al. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem Rev. 2004;104:3723–3750.
  • Senge MO, Fazekas M, Notaras EG, et al. Nonlinear optical properties of porphyrins. Adv Mater. 2007;19:2737–2774.
  • Blau WJ, Byrne HJ, Cardin DJ, et al. Large infrared nonlinear optical response of C60. Phys Rev Lett. 1991;67:1423.
  • Izard N, Billaud P, Riehl D, et al. Influence of structure on the optical limiting properties of nanotubes. Opt Lett. 2005;30:1509–1511.
  • Bao Q, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater. 2009;19:3077–3083.
  • Chen Y, Lin Y, Liu Y, et al. Carbon nanotube-based functional materials for optical limiting. J Nanosci Nanotechnol. 2007;7:1268–1283.
  • Zhang C, Song Y, Wang X. Correlations between molecular structures and third-order non-linear optical functions of heterothiometallic clusters: a comparative study. Coord Chem Rev. 2007;251:111–141.
  • Liu C, Wang X, Gong Q, et al. Nanosecond optical limiting property of a novel octanuclear silver cluster complex containing arylselenolate ligands. Adv Mater. 2001;13:1687–1690.
  • Zhou GJ, Wong WY, Lin Z, et al. White metallopolyynes for optical limiting/transparency trade-off optimization. Angew Chem Int Ed. 2006;45:6189–6193.
  • Bisoyi HK, Li Q. Liquid crystals. Kirk-othmer encyclopedia of chemical technology. New York (NY): John Wiley & Sons; 2014.
  • Wang L, Li Q. Stimuli directing self-organized 3D liquid crystalline nanostructures: from materials design to photonic applications. Adv Funct Mater. 2016;26:10–28.
  • Zhang L, Wang M, Wang L, et al. Polymeric infrared reflective thin films with ultra-broad bandwidth. Liq Cryst. 2016;43:750–757.
  • Muševič I. Integrated and topological liquid crystal photonics. Liq Cryst. 2014;41:418–429.
  • Liu L, Huang W, Diao Z, et al. Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: reduced losses through forster transfer. Liq Cryst. 2014;41:145–152.
  • Diao Z, Huang W, Peng Z, et al. Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal. Liq Cryst. 2014;41:239–246.
  • Yang DK, Wu ST. Liquid crystal physics. Fundamentals of liquid crystal devices. Chichester (UK): John Wiley & Sons; 2006.
  • Wang L, Li Q. Stimuli-responsive self-organized liquid crystalline nanostructures: from 1D to 3D photonic crystals. organic and hybrid photonic crystals. In: Comoretto D, editor. Organic and hybrid photonic crystals. Cham (Switzerland): Springer; 2015. p. 393–430.
  • Li Q. Liquid crystals beyond displays: Chemistry, physics, and applications. Hoboken (NJ): John Wiley & Sons; 2012.
  • Schadt M. Nematic liquid crystals and twisted-nematic LCDs. Liq Cryst. 2015;42:646–652.
  • Khoo IC. Liquid crystals: physical properties and nonlinear optical phenomena. Hoboken (NJ): John Wiley & Sons; 2007.
  • Oswald P, Pieranski P. Nematic and cholesteric liquid crystals. Boca Raton (FL): Taylor and Francis; 2005.
  • Khoo IC. Nonlinear optics, active plasmonics and metamaterials with liquid crystals. Prog Quant Electr. 2014;38:77–117.
  • Khoo IC. Nonlinear optics of liquid crystalline materials. Phys Rep. 2009;471:221–267.
  • Khoo IC. Extreme nonlinear optics of nematic liquid crystals. J Opt Soc Am B. 2011;28:A45–A55.
  • Ge Z, Wu ST. Transflective liquid crystal displays. Chichester (UK): John Wiley & Sons; 2010.
  • Soref RA, Rafuse MJ. Electrically controlled birefringence of thin nematic films. J Appl Phys. 1972;43:2029–2037.
  • Khoo IC, Wu ST. Optics and nonlinear optics of liquid crystals. Singapore: World Scientific; 1993.
  • Rudenko EV, Sukhov AV. Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity. J Exp Theor Phys. 1994;105:1621–1634.
  • Sato S. Photovoltaic effects in MBBA cells containing organic dyes. Jpn J Appl Phys. 1981;20:1989.
  • Khoo IC, Slussarenko S, Guenther BD, et al. Optically induced space-charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals. Opt Lett. 1998;23:253–2555.
  • Janossy I, Csillag L, Lloyd AD. Temperature dependence of the optical Freedericksz transition in dyed nematic liquid crystals. Phys Rev A. 1991;44:8410.
  • Khoo IC, Wood M, Shih MY, et al. Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection. Opt Express. 1999;4:432–442.
  • Khoo IC, Ding J, Diaz A, et al. Recent studies of optical limiting, image processing and near-infrared nonlinear optics with nematic liquid crystals. Mol Cryst Liq Cryst. 2002;375:33–44.
  • Hrozhyk UA, Serak SV, Tabiryan NV, et al. Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams. Opt Express. 2010;18:8697–8704.
  • Kosa T, Sukhomlinova L, Su L, et al. Light-induced liquid crystallinity. Nature. 2012;485:347–349.
  • Xue C, Xiang J, Nemati H, et al. Light-driven reversible alignment switching of liquid crystals enabled by azo thiol grafted gold nanoparticles. Chem Phys Chem. 2015;16:1852–1856.
  • Lee YH, Wang L, Yang H, et al. Photo-induced handedness inversion with opposite-handed cholesteric liquid crystal. Opt Express. 2015;23:22658–22666.
  • Shishido A, Tsutsumi O, Kanazawa A, et al. Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis. J Am Chem Soc. 1997;119:7791–7796.
  • Shirk JS, Pong RG, Bartoli FJ, et al. Optical limiter using a lead phthalocyanine. Appl Phys Lett. 1993;63:1880–1882.
  • Perry JW, Mansour K, Lee IS, et al. Organic optical limiter with a strong nonlinear absorptive response. Science. 1996;273:1533–1536.
  • Sheng C, Norwood RA, Wang J, et al. Nonlinear optical transmission of lead phthalocyanine-doped nematic liquid crystal composites for multiscale nonlinear switching from nanosecond to continuous wave. Appl Opt. 2009;48:2731–2734.
  • Khoo IC, Park JH, Liou JD. Theory and experimental studies of all-optical transmission switching in a twist-alignment dye-doped nematic liquid crystal. J Opt Soc Am B. 2008;25:1931–1937.
  • Khoo IC, Park JH, Liou J. All-optical switching of continuous wave, microsecond lasers with a dye-doped nematic liquid crystal. Appl Phys Lett. 2007;90:151107.
  • Khoo IC, Liou J, Stinger MV. Microseconds–nanoseconds all-optical switching of visible-near infrared (0.5 µm-1.55 µm) lasers with dye-doped nematic liquid crystals. Mol Cryst Liq Cryst. 2010;527:109–265.
  • Khoo IC, Liou J, Stinger MV, et al. Ultrafast all-optical switching with transparent and absorptive nematic liquid crystals-implications in tunable metamaterials. Mol Cryst Liq Cryst. 2011;543:151–917.
  • He GS, Lin TC, Prasad PN, et al. Optical power limiting and stabilization using a two-photon absorbing neat liquid crystal in isotropic phase. Appl Phys Lett. 2003;82:4717–4719.
  • Sheng C, Chen Q, Norwood RA, et al. Simple way for achieving passive all-optical switching of continuous waves lasers using pure nematic liquid crystal. Appl Opt. 2011;50:5788–5790.
  • Martin RB, Meziani MJ, Pathak P, et al. Optical limiting of silver-containing nanoparticles. Opt Mater. 2007;29:788–793.
  • Qu S, Du C, Song Y, et al. Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands. Chem Phys Lett. 2002;356:403–408.
  • Porel S, Singh S, Harsha SS, et al. Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting. Chem Mater. 2005;17:9–12.
  • Pan H, Chen W, Feng YP, et al. Optical limiting properties of metal nanowires. Appl Phys Lett. 2006;88:223106.
  • Venkatram N, Rao DN, Akundi MA. Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles. Opt Express. 2005;13:867–872.
  • Wang L, Dong H, Li Y, et al. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles. J Am Chem Soc. 2014;136:4480–4483.
  • Wang L, Dong H, Li Y, et al. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer. Adv Mater. 2015;27:2065–2069.
  • Wang Y, Lv M, Guo J, et al. Carbon-based optical limiting materials. Sci China Chem. 2015;58:1782–1791.
  • Xu Y, Liu Z, Zhang X, et al. A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv Mater. 2009;21:1275–1279.
  • Tutt LW, Kost A. Optical limiting performance of C60 and C70 solutions. Nature. 1992;356:225–226.
  • Chen P, Wu X, Sun X, et al. Electronic structure and optical limiting behavior of carbon nanotubes. Phys Rev Lett. 1999;82:2548.
  • Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nat Photonics. 2010;4:611–622.
  • Williams Y, Chen K, Park JH, et al. Electro-optical and nonlinear optical properties of semiconductor nanorod doped liquid crystals. Proc SPIE. 2005;5936:5936131–5936136.
  • Lee W, Chiu CS. Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes. Opt Lett. 2001;26:521–523.
  • Khoo IC, Ding J, Zhang Y, et al. Supra-nonlinear photorefractive response of single-walled carbon nanotube-and C60-doped nematic liquid crystal. Appl Phys Lett. 2003;82:3587–3589.
  • Khoo IC. Holographic grating formation in dye-and fullerene C 60-doped nematic liquid-crystal film. Opt Lett. 1995;20:2137–2139.
  • Klimusheva G, Mirnaya T, Garbovskiy Y. Versatile nonlinear-optical materials based on mesomorphic metal alkanoates: design, properties, and applications. Liq Cryst Rev. 2015;3:28–57.
  • Lysenko D, Ouskova E, Ksondzyk S, et al. Light-induced changes of the refractive indices in a colloid of gold nanoparticles in a nematic liquid crystal. Eur Phys J E. 2012;35:33.
  • Karpinski P, Miniewicz A. Investigation of enhancement of photoinduced reorientation of liquid-crystal molecules in the presence of azo-dye and gold nanoparticles. Eur Phys Lett. 2009;88:56003.
  • Acreman A, Kaczmarek M, D’Alessandro G. Gold nanoparticle liquid crystal composites as a tunable nonlinear medium. Phys Rev E. 2014;90:012504.
  • Podoliak N, Bartczak D, Buchnev O, et al. High optical nonlinearity of nematic liquid crystals doped with gold nanoparticles. J Phys Chem C. 2012;116:12934–12939.
  • Khoo IC, Diaz A, Kubo S, et al. Nano-dispersed organic liquid and liquid crystals for all-time-scales optical switching and tunable negative-and zero-index materials. Mol Cryst Liq Cryst. 2008;485:934–944.
  • Quint MT, Delgado S, Paredes JH, et al. All-optical switching of nematic liquid crystal films driven by localized surface plasmons. Opt Express. 2015;23:6888–6895.
  • Quint MT, Delgado S, Paredes JH, et al. Optical switching of nematic liquid crystal film arising from induced electric field of localized surface plasmon resonance. Proc SPIE. 2015;9547:954729.
  • Wang L, Gutierrez-Cuevas KG, Bisoyi HK, et al. NIR light-directing self-organized 3D photonic superstructures loaded with anisotropic plasmonic hybrid nanorods. Chem Comm. 2015;51:15039–15042.
  • Gutierrez-Cuevas KG, Wang L, Xue C, et al. Near infrared light-driven liquid crystal phase transition enabled by hydrophobic mesogen grafted plasmonic gold nanorods. Chem Comm. 2015;51:9845–9848.
  • Wang L, Gutierrez-Cuevas KG, Urbas A, et al. Near-infrared light-directed handedness inversion in plasmonic nanorod-embedded helical superstructure. Adv Opt Mater. 2015;4:247–251.
  • Cheng Z, Wang T, Li X, et al. NIR–Vis–UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites. ACS Appl Mater Interfaces. 2015;7:27494–27501.
  • Yu L, Cheng Z, Dong Z, et al. Photomechanical response of polymer-dispersed liquid crystals/graphene oxide nanocomposites. J Mater Chem C. 2014;2:8501–8506.
  • Yu L, Yu H. Light-powered tumbler movement of graphene oxide/polymer nanocomposites. ACS Appl Mater Interfaces. 2015;7:3834–3839.
  • Yang Y, Zhan W, Peng R, et al. Graphene-enabled superior and tunable photomechanical actuation in liquid crystalline elastomer nanocomposites. Adv Mater. 2015;27:6376–6381.
  • Marshall JE, Ji Y, Torras N, et al. Carbon-nanotube sensitized nematic elastomer composites for IR-visible photo-actuation. Soft Matter. 2012;8:1570–1574.
  • Butler JJ, Bowcock AS, Sueoka SR, et al. Optical properties of solid-core photonic crystal fibers filled with nonlinear absorbers. Opt Express. 2013;21:20707–20712.
  • Alkeskjold TT, Lægsgaard J, Bjarklev A, et al. All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. Opt Express. 2004;12:5857–5871.
  • Du F, Lu YQ, Wu ST. Electrically tunable liquid-crystal photonic crystal fiber. Appl Phys Lett. 2004;85:2181–2183.
  • Scolari L, Wei L, Gauza S, et al. Low loss liquid crystal photonic bandgap fiber in the near-infrared region. Opt Rev. 2011;18:114–116.
  • d’Alessandro A, Asquini R, Trotta M, et al. All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide. Appl Phys Lett. 2010;97:093302.
  • Russell P. Photonic crystal fibers. Science. 2003;299:358–362.
  • Strangi G, Barna V, Caputo R, et al. Color-tunable organic microcavity laser array using distributed feedback. Phys Rev Lett. 2005;94:063903.
  • Zografopoulos DC, Asquini R, Kriezis EE, et al. Guided-wave liquid-crystal photonics. Lab Chip. 2012;12:3598–3610.
  • Butler JJ, Wathen JJ, Flom SR, et al. Optical limiting properties of nonlinear multimode waveguides. Opt Lett. 2003;28:1689–1691.
  • Butler JJ, Flom SR, Shirk JS, et al. Optical limiting properties of nonlinear multimode waveguide arrays. Opt Express. 2009;17:804–809.
  • Khoo IC, Diaz A, Ding J. Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses. J Opt Soc Am B. 2004;21:1234–1240.
  • Huang J Nonlinear liquids and mechanisms for all-time-scale optical limiting effects [ PhD thesis]. The Pennsylvania State University, 2011.
  • He GS, Yuan L, Bhawalkar JD, et al. Optical limiting, pulse reshaping, and stabilization with a nonlinear absorptive fiber system. Appl Opt. 1997;36:3387–3392.
  • Khoo IC, Chen PH, Wood MV, et al. Molecular photonics of a highly nonlinear organic fiber core liquid for picosecond–nanosecond optical limiting application. Chem Phys. 1999;245:517–531.
  • He GS, Yoshida M, Bhawalkar JD, et al. Two-photon resonance-enhanced refractive-index change and self-focusing in a dye-solution-filled hollow fiber system. Appl Opt. 1997;36:1155–1163.
  • Khoo IC, Wood MV, Guenther BD, et al. Nonlinear absorption and optical limiting of laser pulses in a liquid-cored fiber array. J Opt Soc Am B. 1998;15:1533–1540.
  • Khoo IC, Diaz A, Wood MV, et al. Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array. IEEE J Sel Top Quant Electr. 2001;7:760–768.
  • Khoo IC. Nonlinear organic liquid-cored fiber array for all-optical switching and sensor protection against short-pulsed lasers. IEEE J Sel Top Quant Electr. 2008;14:946–951.
  • Khoo IC, Li H. Nonlinear optical propagation and self-limiting effect in liquid-crystalline fibers. Appl Phys B. 1994;59:573–580.
  • Khoo IC, Li H, LoPresti PG, et al. Observation of optical limiting and backscattering of nanosecond laser pulses in liquid-crystal fibers. Opt Lett. 1994;19:530–532.
  • Khoo IC, Wood MV, Lee M, et al. Nonlinear liquid-crystal fiber structures for passive optical limiting of short laser pulses. Opt Lett. 1996;21:1625–1627.
  • Khoo IC, Li H, Liang Y, et al. Nonlinear optical phenomena in fullerene-doped liquid crystal films and fibers. Proc SPIE. 1995;2530:134–148.
  • Khoo IC Development of multifunctional ultra-nonlinear liquids and liquid crystals for sensor protection applications. Pennsylvnia State University Park Office of Sponsored Programs. 2008.
  • Poudereux D, Orzechowski K, Chojnowska O, et al. Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase. Proc SPIE. 2014;9290:92900A.
  • Khoo IC. DC-field-assisted grating formation and nonlinear diffractions in methyl-red dye-doped blue phase liquid crystals. Opt Lett. 2015;40:60–63.
  • Khoo IC, Lin TH. Nonlinear optical grating diffraction in dye-doped blue-phase liquid crystals. Opt Lett. 2012;37:3225–3227.
  • Chen CW, Jau HC, Wang CT, et al. Random lasing in blue phase liquid crystals. Opt Express. 2012;20:23978–23984.
  • Khoo IC, Chen CW, Ho TJ. Observation of photorefractive effects in blue-phase liquid crystal containing fullerene-C 60. Opt Lett. 2016;41:123–126.
  • Kikuchi H, Yokota M, Hisakado Y, et al. Polymer-stabilized liquid crystal blue phases. Nat Mater. 2002;1:64–68.
  • Wang L, He W, Xiao X, et al. Hysteresis-free blue phase liquid-crystal-stabilized by ZnS nanoparticles. Small. 2012;8:2189–2193.
  • Coles HJ, Pivnenko MN. Liquid crystal ‘blue phases’ with a wide temperature range. Nature. 2005;436:997–1000.
  • Wang L, He W, Xiao X, et al. Wide blue phase range and electro-optical performances of liquid crystalline composites doped with thiophene-based mesogens. J Mater Chem. 2012;22:2383–2386.
  • Cao W, Muñoz A, Palffy-Muhoray P, et al. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nat. 2002;1:111–113.
  • Wang L, He W, Xiao X, et al. Low voltage and hysteresis-free blue phase liquid crystal dispersed by ferroelectric nanoparticles. J Mater Chem. 2012;22:19629–19633.
  • Wright DC, Mermin ND. Crystalline liquids: the blue phases. Rev Mod Phys. 1989;61:385.
  • Castles F, Morris SM, Hung JM, et al. Stretchable liquid crystal blue phase gels. Nat Mater. 2014;13:817–821.
  • Wang L, Yu L, Xiao X, et al. Effects of 1, 3, 4-oxadiazoles with different rigid cores on the thermal and electro-optical performances of liquid crystalline blue phases. Liq Cryst. 2012;39:629–638.
  • Lin TH, Li Y, Wang CT, et al. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film. Adv Mater. 2013;25:5050–5054.
  • Wang L, He W, Wang Q, et al. Polymer-stabilized nanoparticle-enriched blue phase liquid crystals. J Mater Chem C. 2013;1:6526–6531.
  • Chen X, Wang L, Li C, et al. Light-controllable reflection wavelength of blue phase liquid crystals doped with azobenzene-dimers. Chem Comm. 2013;49:10097–10099.
  • Li B, He W, Wang L, et al. Effect of lateral fluoro substituents of rodlike tolane cyano mesogens on blue phase temperature ranges. Soft Matter. 2013;9:1172–1177.
  • Wang L, He W, Wang M, et al. Effects of symmetrically 2, 5-disubstituted 1, 3, 4-oxadiazoles on the temperature range of liquid crystalline blue phases: a systematic study. Liq Cryst. 2013;40:354–367.
  • Yan J, Rao L, Jiao M, et al. Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications. J Mater Chem. 2011;21:7870–7877.
  • Khoo IC, Hong KL, Zhao S, et al. Blue-phase liquid crystal cored optical fiber array with photonic bandgaps and nonlinear transmission properties. Opt Express. 2013;21:4319–4328.
  • Khoo IC, Chen CW, Hong KL, et al. Nonlinear optics of nematic and blue phase liquid crystals. Mol Cryst Liq Cryst. 2014;594:31–41.
  • Debije MG. Solar energy collectors with tunable transmission. Adv Funct Mater. 2010;20:1498–1502.
  • Evans DR, Cook G, Carns JL. Holographic and nonholographic organic-inorganic hybrids. Mol Cryst Liq Cryst. 2008;488:190–201.
  • Proctor M Fabrication and characterization of hybrid liquid crystal devices [ PhD thesis]. University of Southampton, 2015.
  • Cook G, Wyres CA, Deer MJ, et al. Hybrid organic-inorganic photorefractives. Proc SPIE. 2003;5213:63–77.
  • Bortolozzo U, Residori S, Huignard JP. Adaptive holography in liquid crystal light-valves. Materials. 2012;5:1546–1559.
  • Hu Y, Zhang Y, Xu C, et al. High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett. 2010;10:5025–5031.
  • Pfeifle J, Alloatti L, Freude W, et al. Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding. Opt Express. 2012;20:15359–15376.
  • Komorowska K, Miniewicz A, Parka J, et al. Self-induced nonlinear Zernike filter realized with optically addressed liquid crystal spatial light modulator. J Appl Phys. 2002;92:5635–5641.
  • Bartkiewicz S, Matczyszyn K, Miniewicz A, et al. High gain of light in photoconducting polymer–nematic liquid crystal hybrid structures. Opt Comm. 2001;187:257–261.
  • Marinova V, Chi CH, Tong ZF, et al. Liquid crystal light valve operating at near infrared spectral range. Opt Quant Electron. 2016;48:270.
  • Aubourg P, Huignard JP, Hareng M, et al. Liquid crystal light valve using bulk monocrystalline Bi 12 SiO 20 as the photoconductive material. Appl Opt. 1982;21:3706–3712.
  • Bortolozzo U, Residori S, Huignard JP. Nonlinear optical applications of photorefractive liquid crystal light-valves. J Nonlinear Opt Phys Mater. 2007;16:231–246.
  • Bortolozzo U, Residori S, Huignard JP. Beam coupling in photorefractive liquid crystal light valves. J Phys D Appl Phys. 2008;41:224007.
  • Lucchetti L, Kushnir K, Zaltron A, et al. Light controlled phase shifter for optofluidics. Opt Lett. 2016;41:333–335.
  • Lucchetti L, Kushnir K, Zaltron A, et al. Liquid crystal cells based on photovoltaic substrates. J Eur Opt Soc Rapid. 2016;11:16007.
  • Carns JL, Cook G, Saleh MA, et al. Self-activated liquid-crystal cells with photovoltaic substrates. Opt Lett. 2006;31:993–995.
  • Carns JL, Cook G, Saleh MA, et al. Photovoltaic field-induced self-phase modulation of light in liquid crystal cells. Mol Cryst Liq Cryst. 2006;453:83–92.
  • Sutherland RL, Cook G, Evans DR. Determination of large nematic pre-tilt in liquid crystal cells with mechanically rubbed photorefractive Ce: SBN windows. Opt Express. 2006;14:5365–5375.
  • Evans DR, Cook G. Bragg-matched photorefractive two-beam coupling in organic–inorganic hybrids. J Nonlinear Optic Phys Mat. 2007;16:271–280.
  • Gvozdovskyy I, Shcherbin K, Evans DR, et al. Infrared sensitive liquid crystal photorefractive hybrid cell with semiconductor substrates. Appl Phys B. 2011;104:883–886.
  • Chu KC, Su WS, Chen YF. Liquid crystals driven by CdSe semiconductor. J Appl Phys. 2006;100:024516.
  • Peigné A, Bortolozzo U, Residori S, et al. Adaptive holographic interferometer at 1.55 μm based on optically addressed spatial light modulator. Opt Lett. 2015;40:5482–5485.
  • Shcherbin K, Gvozdovskyy I, Evans DR. Dynamic gratings recording in liquid crystal light valve with semiconductor substrate. Proc SPIE. 2016;9771:97710U.
  • Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies. Renew Sust Energ Rev. 2011;15:1625–1636.
  • Chen CY, Lo YL. Integration of a-Si: H solar cell with novel twist nematic liquid crystal cell for adjustable brightness and enhanced power characteristics. Sol Energ Mater Sol. 2009;93:1268–1275.
  • Zhu R, Kumar A, Yang Y. Polarizing organic photovoltaics. Adv Mater. 2011;23:4193–4198.
  • Huh YH, Park B. Power generating reflective-type liquid crystal displays using a reflective polariser and a polymer solar cell. Sci Rep. 2015;5:11558.
  • Huh YH, Shin JC, Kim YC, et al. Reflective type Solar-LCDs by using polarizing polymer solar cells. Opt Express. 2012;20:A278–A286.
  • Yoon SJ, Joo M, Hwang UJ, et al. Phase modulation induced by a photoelectric field in liquid crystal cells with dye-sensitized titania layers. J Phys Chem C. 2008;112:18592–18597.
  • Muralt P. Micromachined infrared detectors based on pyroelectric thin films. Rep Prog Phys. 2001;64:1339.
  • Whatmore RW. Pyroelectric ceramics and devices for thermal infra-red detection and imaging. Ferroelectrics. 1991;118:241–259.
  • Merola F, Grilli S, Coppola S, et al. Pyroelectric manipulation of liquid crystal droplets. Proc SPIE. 2013;8792:87920V.
  • Grilli S, Coppola S, Vespini V, et al. 3D lithography by rapid curing of the liquid instabilities at nanoscale. Proc Nati Acad Sci. 2011;108:15106–15111.
  • Ferraro P, Coppola S, Grilli S, et al. Dispensing nano-pico droplets and liquid patterning by pyroelectrodynamic shooting. Nat Nanotechnol. 2010;5:429–435.
  • Coppola S, Vespini V, Grilli S, et al. Self-assembling of multi-jets by pyroelectrohydrodynamic effect for high throughput liquid nanodrops transfer. Lab Chip. 2011;11:3294–3298.
  • Vespini V, Coppola S, Grilli S, et al. Pyroelectric adaptive nanodispenser (PYRANA) microrobot for liquid delivery on a target. Lab Chip. 2011;11:3148–3152.
  • Merola F, Grilli S, Coppola S, et al. Reversible fragmentation and self-assembling of nematic liquid crystal droplets on functionalized pyroelectric substrates. Adv Funct Mater. 2012;22:3267–3272.
  • Dawlaty JM, Shivaraman S, Strait J, et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl Phys Lett. 2008;93:131905.
  • Battista L, Mecozzi L, Coppola S, et al. Graphene and carbon black nano-composite polymer absorbers for a pyro-electric solar energy harvesting device based on LiNbO3 crystals. Appl Energy. 2014;136:357–362.
  • Zhang JW, Sun X, Zhao H. Broadband coverage optical sensor with liquid crystalline materials and pyroelectrics. Mater Res Soc Symp Proc. 2011;1293:mrsf10-1293-l03-04. doi:10.1557/opl.2011.291.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.