932
Views
53
CrossRef citations to date
0
Altmetric
Invited Article

Graphene and liquid crystal mediated interactions

, &
Pages 2375-2390 | Received 21 Apr 2016, Published online: 20 Jun 2016

References

  • Shahil KMF, Balandin AA. Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 2012;152:1331–1340. doi:10.1016/j.ssc.2012.04.034.
  • Renteria JD, Nika DL, Balandin AA. Graphene thermal properties: applications in thermal management and energy storage. Appl Sci. 2014;4:525–547. doi:10.3390/app4040525.
  • Goli P, Legedza S, Dhar A, et al. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J Power Sources. 2014;248:37–43. doi:10.1016/j.jpowsour.2013.08.135.
  • Pradhan P, Podila R, Mollia M, et al. Optical limiting and nonlinear optical properties of gold-decorated graphene nanocomposites. Opt Mater. 2015;39:182–187. doi:10.1016/j.optmat.2014.11.023.
  • Hu W, Li Z, Yang J. Structural electronic and optical properties of hybrid silicene and graphene nanocomposite. J Chem Phys. 2013;139:154704. doi:10.1063/1.4824887.
  • Lynch MD, Patrick DL. Organizing carbon nanotubes with liquid crystals. Nano Lett. 2002;2:1197–1201. doi:10.1021/nl025694j.
  • Dierking I, Scalia G, Morales P. Liquid crystal–carbon nanotube dispersions. J Appl Phys. 2005;97:044309. doi:10.1063/1.1850606.
  • Basu R, Iannacchione G. Carbon nanotube dispersed liquid crystal: a nano electromechanical system. Appl Phys Lett. 2008;93:183105. doi:10.1063/1.3005590.
  • Basu R, Iannacchione G. Dielectric hysteresis, relaxation dynamics, and nonvolatile memory effect in carbon nanotube dispersed liquid crystal. J Appl Phys. 2009;106:124312. doi:10.1063/1.3272080.
  • Basu R, Iannacchione G. Nematic anchoring on carbon nanotubes. Appl Phys Lett. 2009;95:173113. doi:10.1063/1.3256013.
  • Basu R, Iannacchione G. Orientational coupling enhancement in a carbon nanotube dispersed liquid crystal. Phys Rev E. 2010;81:051705. doi:10.1103/PhysRevE.81.051705.
  • Baik I-S, Jeon SY, Lee SH, et al. Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell. Appl Phys Lett. 2005;87:263110. doi:10.1063/1.2158509.
  • Basu R, Iannacchione G. Evidence for directed self-assembly of quantum dots in a nematic liquid crystal. Phys Rev E. 2009;80:010701(R). doi:10.1103/PhysRevE.80.010701.
  • Rodarte AL, Pandolfi RJ, Ghosh S, et al. Quantum dot/liquid crystal composite materials: self-assembly driven by liquid crystal phase transition templating. J Mater Chem C. 2013;1:5527–5532. doi:10.1039/c3tc31043d.
  • Rodarte AL, Gray C, Hirst LS, et al. Spectral and polarization modulation of quantum dot emission in a one-dimensional liquid crystal photonic cavity. Phys Rev B. 2012;85:035430. doi:10.1103/PhysRevB.85.035430.
  • Mirzaei J, Reznikov M, Hegmann T. Quantum dots as liquid crystal dopants. J Mater Chem. 2012;22:22350–22365. doi:10.1039/c2jm33274d.
  • Lopatina LM, Selinger JV. Theory of ferroelectric nanoparticles in nematic liquid crystals. Phys Rev Lett. 2009;102:197802. doi:10.1103/PhysRevLett.102.197802.
  • Li F, Buchnev O, Cheon CI, et al. Orientational coupling amplification in ferroelectric nematic colloids. Phys Rev Lett. 2006;97:147801. doi:10.1103/PhysRevLett.97.147801.
  • Reznikov Y, Buchnev O, Tereshchenko O, et al. Ferroelectric nematic suspension. Appl Phys Lett. 2003;82:1917–1919. doi:10.1063/1.1560871.
  • Basu R. Soft memory in a ferroelectric nanoparticle-doped liquid crystal. Phys Rev E. 2014;89:022508. doi:10.1103/PhysRevE.89.022508.
  • Basu R, Garvey A. Effects of ferroelectric nanoparticles on ion transport in a liquid crystal. Appl Phys Lett. 2014;105:151905. doi:10.1063/1.4898581.
  • Kempaiah R, Liu Y, Nie Z, et al. Giant soft-memory in liquid crystal nanocomposites. Appl Phys Lett. 2016;108:083105. doi:10.1063/1.4942593.
  • Chen H-Y, Lee W, Clark NA. Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension. Appl Phys Lett. 2007;90:033510. doi:10.1063/1.2432294.
  • Basu R. Effect of carbon nanotubes on the field-induced nematic switching. Appl Phys Lett. 2013;103:241906. doi:10.1063/1.4846676.
  • Basu R, Boccuzzi KA, Ferjani S, et al. Carbon nanotube-induced chirality in an achiral liquid crystal. Appl Phys Lett. 2010;97:121908. doi:10.1063/1.3492844.
  • Basu R, Petschek RG, Rosenblatt C. Nematic electroclinic effect in a carbon-nanotube-doped achiral liquid crystal. Phys Rev E. 2011;83:041707. doi:10.1103/PhysRevE.83.041707.
  • Basu R, Chen C-L, Rosenblatt C. Carbon nanotube-induced macroscopic helical twist in an achiral nematic liquid crystal. J Appl Phys. 2011;109:083518. doi:10.1063/1.3576101.
  • Basu R, Rosenblatt C, Lemieux R. Chiral induction in thioester and oxoester liquid crystals by dispersed carbon nanotubes. Liq Cryst. 2012;39:199–204. doi:10.1080/02678292.2011.628703.
  • Basu R, Kinnamon D, Garvey A. Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal. Appl Phys Lett. 2015;106:201909. doi:10.1063/1.4921752.
  • Basu R, Garvey A, Kinnamon D. Effects of graphene on electro-optic response and ion-transport in a nematic liquid crystal. J Appl Phys. 2015;117:074301. doi:10.1063/1.4908608.
  • Basu R. Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal. Appl Phys Lett. 2014;105:112905. doi:10.1063/1.4896112.
  • Basu R, Kinnamon D, Garvey A. Detection of graphene chirality using achiral liquid crystalline platforms. J Appl Phys. 2015;118:114302. doi:10.1063/1.4931147.
  • Kim DW, Kim YH, Jeong HS, et al. Direct visualization of large-area graphene domains and boundaries by optical birefringency. Nat Nanotech. 2012;7:29–34. doi:10.1038/nnano.2011.198.
  • Shehzad MA, Tien DH, Iqbal MW, et al. Nematic liquid crystal on a two dimensional hexagonal lattice and its application. Sci Rep. 2015;5:13331. doi:10.1038/srep13331.
  • Park KA, Lee SM, Lee SH, et al. Anchoring a liquid crystal molecule on a single-walled carbon nanotube. J Phys Chem C. 2007;111:1620–1624. doi:10.1021/jp0659960.
  • De Gennes PG, Prost J. The physics of liquid crystals. New York: Oxford University Press; 1995.
  • Blatt S, Hennrich F, Lolhneysen H, et al. Influence of structural and dielectric anisotropy on the dielectrophoresis of single-walled carbon nanotubes. Nano Lett. 2007;7:1960–1966. doi:10.1021/nl0706751.
  • Jakeman E, Raynes EP. Electro-optic response times in liquid crystals. Phys Lett A. 1972;39:69–70. doi:10.1016/0375-9601(72)90332-5.
  • Imai M, Naito H, Okuda M, et al. Determination of rotational viscosity of nematic liquid crystals from transient current: numerical analysis and experiment. Jpn J Appl Phys (Part 1). 1994;33:3482–3487. doi:10.1143/JJAP.33.3482.
  • Imai M, Naito H, Okuda M, et al. Determination of rotational viscosity and pretilt angle in nematic liquid crystals from transient current: Influence of ionic conduction. Mol Cryst Liq Cryst Sci Technol Sect A. 1995;259:37–46. doi:10.1080/10587259508038671.
  • Zou Z, Clark NA, Handschy MA. Ionic transport effects in SSFLC cells. Ferroelectrics. 1991;121:147–158. doi:10.1080/00150199108217619.
  • Skarp K, Dahl I, Lagerwal ST, et al. Polarization and viscosity measurements in a ferroelectric liquid crystal by the field reversal method. Mol Cryst Liq Cryst. 1984;114:283–297. doi:10.1080/00268948408071713.
  • Lagerwall ST. Ferroelectric and antiferroelectric liquid crystals. Weinheim: Wiley-VCH; 1999.
  • Kundu S, Ray T, Roy SK, et al. Effect of UV curable polymer on the dielectric & electro-optic properties of ferroelectric liquid crystal. Ferroelectrics. 2003;282:239–248. doi:10.1080/00150190390134914.
  • Blinov LM, Chigrinov VG. Electro-optic effects in liquid crystal materials. New York, NY: Springer-Verlag; 1996.
  • Jiang T, Emerson D, Twarowski K, et al. Rotation of the linear-polarization plane of transmitted and reflected light by single- and few-layer graphene. Phys Rev B. 2010;82:235430. doi:10.1103/PhysRevB.82.235430.
  • Cao J, Yin H-J, Song R. Circular dichroism of graphene oxide: the chiral structure model. Front Mater Sci. 2013;7:83–90. doi:10.1007/s11706-013-0192-x.
  • Garoff S, Meyer, RB. Electroclinic effect at the A−C phase change in a chiral smectic liquid crystal. Phys Rev Lett. 1977;38:848–851. doi:10.1103/PhysRevLett.38.848.
  • Raynes EP. The use of bowed reverse twist disclination lines for the measurement of long pitch lengths in chiral nematic liquid crystals. Liq Cryst. 2006;33:1215–1218. doi:10.1080/02678290601008505.
  • Ferjani S, Choi Y, Pendery J, et al. Mechanically generated surface chirality at the nanoscale. Phys Rev Lett. 2010;104:257801. doi:10.1103/PhysRevLett.104.257801.
  • Kimura M, Yamada Y, Ishihara H, et al. Numerical calculatiqns of electroclinic effect: effect of the polar anchoring strength. Mol Cryst Liq Cryst Sci Technol, Sect A. 1997;302:199–205. doi:10.1080/10587259708041829.
  • Xue JZ, Clark NA. Surface electroclinic effect in chiral smectic-A liquid crystals. Phys Rev Lett. 1990;64:307–310. doi:10.1103/PhysRevLett.64.307.
  • Basu R, Pendery J, Petschek RG, et al. Macroscopic torsional strain and induced molecular conformational deracemization. Phys Rev Lett. 2011;107:237804. doi:10.1103/PhysRevLett.107.237804.
  • Blake P, Brimicombe PD, Nair RR, et al. Graphene-based liquid crystal device. Nano Lett. 2008;8:1704–1708. doi:10.1021/nl080649i.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.