342
Views
17
CrossRef citations to date
0
Altmetric
Invited Article

Study of the mesomorphic behaviour through the structure modification of azo and acetylene pyridinium and imidazolium-based ionic liquid crystals

, , &
Pages 2163-2190 | Received 02 May 2016, Published online: 03 Jul 2016

References

  • Axenov KV, Laschat S. Thermotropic ionic liquid crystals. Materials. 2011;4:206–259. doi:10.3390/ma4010206.
  • Goossens K, Lava K, Bielawski CW, et al. Ionic liquid crystals: versatile materials. Chem Rev. 2016;116:4643–4807. doi:10.1021/cr400334b.
  • Mansueto M, Laschat S. Ionic liquid crystals. In: Goodby JW, Collings PJ, Kato T, et al. editors. Handbook of liquid crystals. 6 - Part II. 2nd ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2014. p. 231–280.
  • Soberats B, Uchida E, Yoshio M, et al. Macroscopic photocontrol of ion-transporting pathways of a nanostructured imidazolium-based photoresponsive liquid crystal. J Am Chem Soc. 2014;136:9552–9555. doi:10.1021/ja5041573.
  • Noujeim N, Samsam S, Eberlin L, et al. Mesomorphic and ion conducting properties of dialkyl(1,4-phenylene)diimidazolium salts. Soft Matter. 2012;8:10914–10920. doi:10.1039/c2sm26213d.
  • Uchida Y, Matsumoto T, Akita T, et al. Ion conductive properties in ionic liquid crystalline phases confined in a porous membrane. J Mater Chem C. 2015;3:6144–6147. doi:10.1039/C5TC00314H.
  • Yoshio M, Mukai T, Ohno H, et al. One-dimensional ion transport in self-organized columnar ionic liquids. J Am Chem Soc. 2004;126:994–995. doi:10.1021/ja0382516.
  • Soberats B, Yoshio M, Ichikawa T, et al. Zwitterionic liquid crystals as 1D and 3D lithium ion transport media. J Mater Chem A. 2015;3:11232–11238. doi:10.1039/C5TA00814J.
  • Sakuda J, Hosono E, Yoshio M, et al. Liquid-crystalline electrolytes for lithium-ion batteries: ordered assemblies of a mesogen-containing carbonate and a lithium salt. Adv Funct Mater. 2015;25:1206–1212. doi:10.1002/adfm.v25.8.
  • Atta NF, Galal A, Azab SM, et al. Electrochemical sensor based on ionic liquid crystal modified carbon paste electrode in presence of surface active agents for enoxacin antibacterial drug. J Electrochem Soc. 2015;162:B9–B15. doi:10.1149/2.0251501jes.
  • Zapp E, da Silva PS, Westphal E, et al. Troponin T immunosensor based on liquid crystal and silsesquioxane-supported gold nanoparticles. Bioconjugate Chem. 2014;25:1638–1643. doi:10.1021/bc500341a.
  • Henmi M, Nakatsuji K, Ichikawa T, et al. Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation of ions. Adv Mater. 2012;24:2238–2241. doi:10.1002/adma.201200108.
  • Hoven CV, Garcia A, Bazan GC, et al. Recent applications of conjugated polyelectrolytes in optoelectronic devices. Adv Mater. 2008;20:3793–3810. doi:10.1002/adma.v20:20.
  • Yamanaka N, Kawano R, Kubo W, et al. Dye-sensitized TiO2 solar cells using imidazolium-type ionic liquid crystal systems as effective electrolytes. J Phys Chem B. 2007;111:4763–4769. doi:10.1021/jp0671446.
  • Yamanaka N, Kawano R, Kubo W, et al. Ionic liquid crystal as a hole transport layer of dye-sensitized solar cells. Chem Commun. 2005;740–742. doi:10.1039/b417610c.
  • Zhang S, Zhang Q, Zhang Y, et al. Beyond solvents and electrolytes: ionic liquids-based advanced functional materials. Prog Mater Sci. 2016;77:80–124. doi:10.1016/j.pmatsci.2015.10.001.
  • Westphal E, Silva DHD, Molin F, et al. Pyridinium and imidazolium 1,3,4-oxadiazole ionic liquid crystals: a thermal and photophysical systematic investigation. RSC Adv. 2013;3:6442–6454. doi:10.1039/c3ra23456h.
  • Pană A, Iliş M, Staicu T, et al. Columnar bis(pyridinium) ionic liquid crystals derived from 4-hydroxypyridine: synthesis, mesomorphism and emission properties. Liq Cryst. 2016;43:381–392.
  • Fouchet J, Douce L, Heinrich B, et al. A convenient method for preparing rigid-core ionic liquid crystals. Beilstein J Org Chem. 2009;5:51. doi:10.3762/bjoc.5.51.
  • Starkulla G, Kaller M, Frey W, et al. Liquid crystalline imidazolium salts bearing 5-phenylpyrimidine: dependence of mesomorphic properties on spacer lengths, terminal N-alkyl group and counterions. Liq Cryst. 2011;38:1515–1529. doi:10.1080/02678292.2011.614699.
  • Trbojevic N, Haenle JC, Wöhrle T, et al. Induction of ionic smectic C phases: a systematic study of alkyl-linked guanidinium-based liquid crystals. Liq Cryst. 2016;43:1135–1147. doi:10.1080/02678292.2016.1161093.
  • Cheng X, Bai X, Jing S, et al. Self-assembly of imidazolium-based rodlike ionic liquid crystals: transition from lamellar to micellar organization. Chem Eur J. 2010;16:4588–4601. doi:10.1002/chem.v16:15.
  • Cheng X, Su F, Huang R, et al. Effect of central linkages on mesophase behavior of imidazolium-based rod-like ionic liquid crystals. Soft Matter. 2012;8:2274–2285. doi:10.1039/c2sm06854k.
  • Stappert K, Muthmann J, Spielberg ET, et al. Azobenzene-based organic salts with ionic liquid and liquid crystalline properties. Cryst Growth Des. 2015;15:4701–4712. doi:10.1021/acs.cgd.5b01024.
  • Zhang Q, Jiao L, Shan C, et al. Synthesis and characterisation of novel imidazolium-based ionic liquid crystals with a p-nitroazobenzene moiety. Liq Cryst. 2008;35:765–772. doi:10.1080/02678290802130264.
  • Gallardo H, Westphal E. Importance of organic synthesis in the development of liquid crystals. Curr Org Synth. 2015;12:806–821. doi:10.2174/157017941206150828113416.
  • Han J. 1,3,4-oxadiazole based liquid crystals. J Mater Chem C. 2013;1:7779–7797. doi:10.1039/c3tc31458h.
  • Dingemans TJ, Samulski ET. Non-linear boomerang-shaped liquid crystals derived from 2,5-bis(p-hydroxyphenyl)-1,3,4-oxadiazole. Liq Cryst. 2000;27:131–136. doi:10.1080/026782900203308.
  • Van Hecke GR, Cantu TS, Domon M, et al. Use of regular solution theory for calculating binary mesogenic phase diagrams exhibiting azeotrope-like behavior. 2. Maxima forming systems. J Phys Chem. 1980;84:263–267. doi:10.1021/j100440a008.
  • Pugh C, Percec V. Phase transfer Pd(O) catalyzed polymerization reactions. 2. Thermal characterization of liquid crystalline 1,2-(4,4′-Dialkoxyaryl)acetylene derivatives. Mol Cryst Liq Cryst. 1990;178:193–217.
  • Haghbeen K, Tan EW. Facile synthesis of catechol Azo dyes. J Org Chem. 1998;63:4503–4505. doi:10.1021/jo972151z.
  • Binnemans K. Ionic liquid crystals. Chem Rev. 2005;105:4148–4204. doi:10.1021/cr0400919.
  • Kohnen G, Tosoni M, Tussetschläger S, et al. Counterion effects on the mesomorphic properties of chiral imidazolium and pyridinium ionic liquids. Eur J Org Chem. 2009;2009:5601–5609. doi:10.1002/ejoc.v2009:32.
  • Sawada M, Takai Y, Chong C, et al. Pyridinium ion reactivities: substituent effect on the reverse menschutkin reaction of 1-methylpyridinium cations with iodide anion. Tetrahedron Lett. 1985;26:5065–5068. doi:10.1016/S0040-4039(01)80854-6.
  • Dierking I. Textures of liquid crystals. Weinheim: Wiley-VCH; 2003.
  • Blinov LM. Structure and properties of liquid crystals. 1st ed. Netherlands: Springer; 2011.
  • Starkulla GF, Klenk S, Butschies M, et al. Towards room temperature ionic liquid crystals: linear versus bent imidazolium phenylpyrimidines. J Mater Chem. 2012;22:21987–21997. doi:10.1039/c2jm34595a.
  • Wuckert E, Harjung MD, Kapernaum N, et al. Photoresponsive ionic liquid crystals based on azobenzene guanidinium salts. Phys Chem Chem Phys. 2015;17:8382–8392. doi:10.1039/C4CP04783D.
  • Li X, Bruce DW, Shreeve JM. Dicationic imidazolium-based ionic liquids and ionic liquid crystals with variously positioned fluoro substituents. J Mater Chem. 2009;19:8232–8238. doi:10.1039/b912873e.
  • Tschierske C. Micro-segregation, molecular shape and molecular topology - partners for the design of liquid crystalline materials with complex mesophase morphologies. J Mater Chem. 2001;11:2647–2671. doi:10.1039/b102914m.
  • Butschies M, Mansueto M, Haenle JC, et al. Headgroups versus symmetry in congruent ion pairs: which one does the job in mesomorphic aryl guanidinium and aryl imidazolium sulphonates?. Liq Cryst. 2014;41:821–838. doi:10.1080/02678292.2014.885600.
  • Motoyanagi J, Fukushima T, Aida T. Discotic liquid crystals stabilized by interionic interactions: imidazolium ion-anchored paraffinic triphenylene. Chem Commun. 2005;101–103. doi:10.1039/b414649b.
  • Bruker SAINT software package V8.34A. Madison, WI: Bruker AXS Inc.; 2013.
  • Bruker SABADS. Madison, WI: Bruker AXS Inc.; 2014.
  • Altomare A, Burla MC, Camalli M, et al. SIR97: a new tool for crystal structure determination and refinement. J Appl Crystallogr. 1999;32:115–119. doi:10.1107/S0021889898007717.
  • Sheldrick G. A short history of SHELX. Acta Crystallogr Sect A. 2008;64:112–122. doi:10.1107/S0108767307043930.
  • Spek AL. Structure validation in chemical crystallography. Acta Crystallogr Sect D. 2009;65:148–155. doi:10.1107/S090744490804362X.
  • Huang W, Han CD. Synthesis of combined main-chain/side-chain liquid-crystalline polymers via self-assembly. Macromolecules. 2006;39:4735–4745. doi:10.1021/ma052716q.
  • Song X, Li J, Zhang S. Supramolecular liquid crystals induced by intermolecular hydrogen bonding between benzoic acid and 4-(alkoxyphenylazo) pyridines. Liq Cryst. 2003;30:331–335. doi:10.1080/0267829031000071284.
  • Binnemans K, Sleven J, De Feyter S, et al. Structure and mesomorphic behavior of alkoxy-substituted Bis(phthalocyaninato)lanthanide(III) complexes. Chem Mater. 2003;15:3930–3938. doi:10.1021/cm034236o.
  • Yelamaggad CV, Achalkumar AS, Rao DSS, et al. A new class of discotic mesogens derived from Tris(N-salicylideneaniline)s existing in C3h and Cs keto-enamine forms. J Org Chem. 2007;72:8308–8318. doi:10.1021/jo0712650.
  • Spivey AC, Shukla L, Hayler JF. Conjugate addition of 2- and 4-pyridylcuprates: an expeditious asymmetric synthesis of natural (−)-evoninic acid. Org Lett. 2007;9:891–894. doi:10.1021/ol070011y.
  • Vogel AI, Tatchell AR, Furnis BS, et al. Vogel’s textbook of practical organic chemistry. England: Longman Scientific & Technical; 1989.
  • Stavber G, Iskra J, Zupan M, et al. Aerobic oxidative iodination of organic compounds with iodide catalyzed by sodium nitrite. Adv Synth Catal. 2008;350:2921–2929. doi:10.1002/adsc.v350:18.
  • Bull SR, Palmer LC, Fry NJ, et al. A templating approach for monodisperse self-assembled organic nanostructures. J Am Chem Soc. 2008;130:2742–2743. doi:10.1021/ja710749q.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.