566
Views
12
CrossRef citations to date
0
Altmetric
Invited Article

Elastic properties of common Gay–Berne nematogens from density of states (DOS) simulations

&
Pages 2285-2299 | Received 29 Apr 2016, Accepted 12 Jun 2016, Published online: 05 Jul 2016

References

  • Miller DS, Abbott NL. Influence of droplet size, pH and ionic strength on endotoxin-triggered ordering transitions in liquid crystalline droplets. Soft Matter. 2013;9:374–382. doi:10.1039/C2SM26811F.
  • Skacej G, Zannoni C. Molecular simulations elucidate electric field actuation in swollen liquid crystal elastomers. Proc Natl Acad Sci USA. 2012;109(26):10193–10198. doi:10.1073/pnas.1121235109.
  • Wang X, Miller DS, Bukusoglu E, et al. Topological defects in liquid crystals as templates for molecular self-assembly. Nat Mater. 2016;15(1):106–112. doi:10.1038/nmat4421.
  • Gabriel JCP, Davidson P. Mineral liquid crystals from self-assembly of anisotropic nanosystems. In: Antoniett M, editor. Colloid chemistry I. Berlin: Springer; 2003. p. 119–172.
  • Gray GW, Kelly SM. Liquid crystals for twisted nematic display devices. J Mater Chem. 1999;9:2037–2050. doi:10.1039/a902682g.
  • Kleman M, Lavrentovich OD. Soft matter physics: an introduction. 1st ed. New York (NY): Springer-Verlag; 2003.
  • Lohr MA, Cavallaro JM, Beller DA, et al. Elasticity-dependent self-assembly of micro-templated chromonic liquid crystal films. Soft Matter. 2014;10(19):3477–3484. doi:10.1039/C3SM53170H.
  • Rahimi M, Roberts TF, Armas-Prez JC, et al. Nanoparticle self-assembly at the interface of liquid crystal droplets. Proc Natl Acad Sci USA. 2015;112(17):5297–5302. doi:10.1073/pnas.1422785112.
  • Moreno-Razo JA, Sambriski EJ, Abbott NL, et al. Liquid-crystalmediated self-assembly at nanodroplet interfaces. Nature. 2012;485(7396):86–89. doi:10.1038/nature11084.
  • Coursault D, Grand J, Zappone B, et al. Linear self-assembly of nanoparticles within liquid crystal defect arrays. Adv Mater. 2012;24(11):1461–1465. doi:10.1002/adma.201103791.
  • Pandey MB, Ackerman PJ, Burkart A, et al. Topology and self-assembly of defect-colloidal superstructure in confined chiral nematic liquid crystals. Phys Rev E. 2015 Jan;91:012501. doi:10.1103/PhysRevE.91.012501.
  • Ravnik M, Čopar S, Žumer S. Particles with changeable topology in nematic colloids. J Phys Condens Matter. 2015;27(35):354111. doi:10.1088/0953-8984/27/35/354111.
  • Tomar V, Roberts TF, Abbott NL, et al. Liquid crystal mediated interactions between nanoparticles in a nematic phase. Langmuir. 2012;28(14):6124–6131. pMID: 22409589. doi:10.1021/la204119p.
  • Gary M, Koenig J, De Pablo JJ, et al. Characterization of the reversible interaction of pairs of nanoparticles dispersed in nematic liquid crystals. Langmuir. 2009;25(23):13318–13321. pMID: 19928936. doi:10.1021/la903464t.
  • Smalyukh II, Chernyshuk S, Lev BI, et al. Ordered droplet structures at the liquid crystal surface and elastic-capillary colloidal interactions. Phys Rev Lett. 2004 Sep;93:117801. doi:10.1103/PhysRevLett.93.117801.
  • Smalyukh II, Lavrentovich OD, Kuzmin AN, et al. Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal. Phys Rev Lett. 2005;95:157801. doi:10.1103/PhysRevLett.95.157801.
  • Eimura H, Miller DS, Wang X, et al. Self-assembly of bioconjugated amphiphilic mesogens having specific binding moieties at aqueousliquid crystal interfaces. Chem Mater. 2016;28(4):1170–1178. doi:10.1021/acs.chemmater.5b04736.
  • Carlton RJ, Hunter JT, Miller DS, et al. Chemical and biological sensing using liquid crystals. Liq Cryst Rev. 2013;1(1):29–51. doi:10.1080/21680396.2013.769310.
  • Bera T, Deng J, Fang J. Protein-induced configuration transitions of polyelectrolyte-modified liquid crystal droplets. J Phys Chem B. 2014;118(18):4970–4975. doi:10.1021/jp501587h.
  • Popov P, Mann EK, Jákli A. Accurate optical detection of amphiphiles at liquid-crystal–water interfaces. Phys Rev Appl. 2014;1(3):034003. doi:10.1103/PhysRevApplied.1.034003.
  • Khan M, Park SY. Specific detection of avidin-biotin binding using liquid crystal droplets. Colloids Surf B: Biointerfaces. 2015;127:241–246. doi:10.1016/j.colsurfb.2015.01.047.
  • Tomar V, Hernandez SI, Abbott NL, et al. Morphological transitions in liquid crystal nanodroplets. Soft Matter. 2012;8:8679–8689. doi:10.1039/c2sm25383f.
  • Lin I, Miller DS, Bertics PJ, et al. Endotoxin-induced structural transformations in liquid crystalline droplets. Science. 2011 Jun;332(6035):1297–1300. doi:10.1126/science.1195639.
  • Lowe AM, Ozer BH, Bai Y, et al. Design of surfaces for liquid crystal-based bioanalytical assays. ACS Appl Mater Interfaces. 2010;2(3):722–731. pMID: 20356273. doi:10.1021/am900753v.
  • Bukusoglu E, Pal SK, De Pablo JJ, et al. Colloid-in-liquid crystal gels formed via spinodal decomposition. Soft Matter. 2014;10(10):1602–1610. doi:10.1039/c3sm51877a.
  • Wood TA, Lintuvuori JS, Schofield AB, et al. A self-quenched defect glass in a colloid-nematic liquid crystal composite. Science. 2011;334(6052):79–83. doi:10.1126/science.1209997.
  • Muševič I, Škarabot M, Tkalec U, et al. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science. 2006;313(5789):954–958. doi:10.1126/science.1129660.
  • Stark H. Physics of colloidal dispersions in nematic liquid crystals. Phys Rep. 2001;351(6):387–474. doi:10.1016/S0370-1573(00)00144-7.
  • Voloschenko D, Pishnyak OP, Shiyanovskii SV, et al. Effect of director distortions on morphologies of phase separation in liquid crystals. Phys Rev E. 2002;65(6):060701. doi:10.1103/PhysRevE.65.060701.
  • Zannoni C, Fisica C, Risorgimento V. Molecular design and computer simulations of novel mesophases. J Mater Chem. 2001;11(11):2637–2646. doi:10.1039/b103923g.
  • Wilson MR. Progress in computer simulations of liquid crystals. Int Rev Phys Chem. 2005;24(3–4):421–455. doi:10.1080/01442350500361244.
  • Tiberio G, Muccioli L, Berardi R, et al. Towards in silico liquid crystals. realistic transition temperatures and physical properties for n-cyanobiphenyls via molecular dynamics simulations. ChemPhysChem. 2009;10(1):125–136. doi:10.1002/cphc.200800231.
  • Whitmer JK, Wang X, Mondiot F, et al. Nematic-field-driven positioning of particles in liquid crystal droplets. Phys Rev Lett. 2013;111(22):227801. doi:10.1103/PhysRevLett.111.227801.
  • Hernandez SI, Moreno-Razo JA, Ramirez-Hernandez A, et al. Liquid crystal nanodroplets, and the balance between bulk and interfacial interactions. Soft Matter. 2012;8(5):1443–1450. doi:10.1039/C1SM06425H.
  • Karjalainen J, Lintuvuori J, Telkki -V-V, et al. Constant-pressure simulations of Gay-Berne liquid-crystalline phases in cylindrical nanocavities. Phys Chem Phys. 2013;15:14047–14057. doi:10.1039/c3cp51241j.
  • Landau LD, Lifshitz E. Course of theoretical physics Vol 7: theory of elasticity. Oxford: Pergamon Press; 1959.
  • Frank FC. I. Liquid crystals. On the theory of liquid crystals. Discuss Faraday Soc. 1958;25(0):19–28. doi:10.1039/df9582500019.
  • Stewart I. The static and dynamic continuum theory of liquid crystals: a mathematical introduction. London New York (NY): Taylor & Francis; 2004.
  • Oseen CW. The theory of liquid crystals. Trans Faraday Soc. 1933;29(l):883–889. doi:10.1039/tf9332900883.
  • Gupta J, Sivakumar S, Caruso F, et al. Size-dependent ordering of liquid crystals observed in polymeric capsules with micrometer and smaller diameters. Angew Chem Int Ed. 2009;48(9):1652–1655. doi:10.1002/anie.200804500.
  • Pairam E, Vallamkondu J, Koning V, et al. Stable nematic droplets with handles. Proc Natl Acad Sci USA. 2013;110(23):9295–9300. doi:10.1073/pnas.1221380110.
  • Davidson ZS, Kang L, Jeong J, et al. Chiral structures and defects of lyotropic chromonic liquid crystals induced by saddle-splay elasticity. Phys Rev E. 2015;91(5):050501. doi:10.1103/PhysRevE.91.050501.
  • Koning V, van Zuiden BC, Kamien RD, et al. Saddle-splay screening and chiral symmetry breaking in toroidal nematics. Soft Matter. 2014;10(23):4192–4198. doi:10.1039/c4sm00076e.
  • Ericksen J. Inequalities in liquid crystal theory. Phys Fluids (1958-1988). 1966;9(6):1205–1207. doi:10.1063/1.1761821.
  • Ravnik M, Žumer S. Landau–de Gennes modelling of nematic liquid crystal colloids. Liq Cryst. 2009 Nov;36(10–11):1201–1214. doi:10.1080/02678290903056095.
  • Wang X, Kim Y-K, Bukusoglu E, et al. Experimental insights into the nanostructure of the cores of topological defects in liquid crystals. Phys Rev Lett. 2016;116(14):147801. doi:10.1103/PhysRevLett.116.147801.
  • Berne BJ, Pechukas P. Gaussian model potentials for molecular interactions. J Chem Phys. 1972;56(8):4213–4216. doi:10.1063/1.1677837.
  • Gay JG, Berne BJ. Modification of the overlap potential to mimic a linear site-site potential. J Chem Phys. 1981;74(6):3316–3319. doi:10.1063/1.441483.
  • Luckhurst G, Simmonds P. Computer simulation studies of anisotropic systems. XXI. Parametrization of the Gay-Berne potential for model mesogens. Mol Phys. 1993 Oct;80(2):233–252. doi:10.1080/00268979300102241.
  • Emerson A, Luckhurst G, Whatling S. Computer simulation studies of anisotropic systems. XXIII. The Gay-Berne discogen. Mol Phys. 1994 May;82(1):113–124. doi:10.1080/00268979400100094.
  • Bates MA, Luckhurst GR. Computer simulation studies of anisotropic systems. XXX. The phase behavior and structure of a Gay-Berne mesogen. J Chem Phys. 1999;110(14):7087. doi:10.1063/1.478563.
  • Allen MP, Warren MA, Wilson MR, et al. Molecular dynamics calculation of elastic constants in Gay–Berne nematic liquid crystals. J Chem Phys. 1996;105:2850. doi:10.1063/1.472147.
  • Joshi AA, Whitmer JK, Guzmán O, et al. Measuring liquid crystal elastic constants with free energy perturbations. Soft Matter. 2014;10(6):882–893. doi:10.1039/C3SM51919H.
  • Humpert A, Allen MP. Elastic constants and dynamics in nematic liquid crystals. Mol Phys. 2015;8976(August):1–13.
  • Luckhurst GR, Satoh K. A computer simulation investigation of the Freedericksz transition for the nematic phase of a Gay-Berne mesogen. Mol Cryst Liq Cryst. 2003;402(1):85–102. doi:10.1080/744816840.
  • Berardi R, Emerson APJ, Zannoni C. Monte Carlo investigations of a Gay–Berne liquid crystal. J Chem Soc, Faraday Trans. 1993;89(22):4069–4078. doi:10.1039/FT9938904069.
  • Palermo V, Biscarini F, Zannoni C. Abrupt orientational changes for liquid crystals adsorbed on a graphite surface. Phys Rev E. 1998 Mar;57(3):R2519–R2522. doi:10.1103/PhysRevE.57.R2519.
  • Cienega-Cacerez O, Moreno-Razo JA, Díaz-Herrera E, et al. Phase equilibria, uid structure, and diffusivity of a discotic liquid crystal. Soft Matter. 2014;10(18):3171–3182. doi:10.1039/c3sm52301b.
  • Prybytak P, Frith WJ, Cleaver DJ. Hierarchical self-assembly of chiral fibres from achiral particles. Interface Focus. 2012;2(5):651–657. doi:10.1098/rsfs.2011.0104.
  • Kushick J, Berne BJ. Computer simulation of anisotropic molecular uids. J Chem Phys. 1976;64(4):1362–1367. doi:10.1063/1.432403.
  • Cleaver DJ, Care CM, Allen MP, et al. Extension and generalization of the Gay-Berne potential. Phys Rev E. 1996 Jul;54(1):559–567. doi:10.1103/PhysRevE.54.559.
  • Berardi R, Fava C, Zannoni C. A generalized Gay-Berne intermolecular potential for biaxial particles. Chem Phys Lett. 1995;236(4–5):462–468. doi:10.1016/0009-2614(95)00212-M.
  • Golubkov PA, Ren P. Generalized coarse-grained model based on point multipole and Gay-Berne potentials. J Chem Phys. 2006;125:6. doi:10.1063/1.2244553.
  • Luckhurst G, Stephens R, Phippen R. Computer simulation studies of anisotropic systems XIX: mesophases formed by the Gay-Berne model mesogen. Liq Cryst. 1990;8(4):451–464. doi:10.1080/02678299008047361.
  • Memmer R, Kuball HG, Schönhofer A. Computer simulation of chiral liquid crystal phases. I. The polymorphism of the chiral Gay-Berne uid. Liq Cryst. 1993 Sep;15(3):345–360. doi:10.1080/02678299308029136.
  • Memmer R. Computer simulation of chiral liquid crystal phases VIII. Blue phases of the chiral Gay- Berne uid. Liq Cryst. 2000;27(4):533–546. doi:10.1080/026782900202723.
  • Cañeda-Guzmán E, Moreno-Razo J, Díaz-Herrera E, et al. Molecular aspect ratio and anchoring strength effects in a confined Gay-Berne liquid crystal. Mol Phys. 2013;112(8):1149–1159. doi:10.1080/00268976.2013.837206.
  • Singh RC. Orientational phase transition of long elongated Gay–Berne molecules. Mol Cryst Liq Cryst. 2006;457(1):67–82. doi:10.1080/15421400500447272.
  • Cañeda-Guzmán E, Moreno-Razo JA, Díaz-Herrera E, et al. Chapter structure and translational diffusion in liquid crystalline phases of a Gay-Berne mesogen: a molecular dynamics study. In: Klapp J, Cros A, Fuentes OV, Stern C, Meza MAR, editors. Experimental and theoretical advances in fluid dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 25–38.
  • Ji Q, Lefort R, Morineau D. Influence of pore shape on the structure of a nanoconfined Gay-Berne liquid crystal. Chem Phys Lett. 2009;478(46):161–165. doi:10.1016/j.cplett.2009.07.062.
  • Luckhurst GR, Satoh K. Computer simulation of the field-induced alignment of the smectic A phase of the Gay-Berne mesogen GB(4.4,20.0,1,1). Mol Cryst Liq Cryst. 2003;394(1):153–169. doi:10.1080/15421400390193747.
  • Miguel ED, Blas FJ, Río EMD. Molecular simulation of model liquid crystals in a strong aligning field. Mol Phys. 2006;104(18):2919–2927. doi:10.1080/00268970600893045.
  • Wang F, Landau DP. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett. 2001;86:2050–2053. doi:10.1103/PhysRevLett.86.2050.
  • Kim EB, Faller R, Yan Q, et al. Potential of mean force between a spherical particle suspended in a nematic liquid crystal and a substrate. J Chem Phys. 2002;117(16):7781–7787. doi:10.1063/1.1508365.
  • Whitmer JK, Chiu C, Joshi AA, et al. Basis function sampling: a new paradigm for material property computations. Phys Rev Lett. 2014 Nov;190602(November):1–5.
  • Whitmer JK, Fluitt AM, Antony L, et al. Sculpting bespoke mountains: determining free energies with basis expansions. J Chem Phys. 2015;143:4. doi:10.1063/1.4927147.
  • Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci USA. 2002;99(20):12562–12566. doi:10.1073/pnas.202427399.
  • Darve E, Rodrguez-Gmez D, Pohorille A. Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys. 2008;128(14):144120. doi:10.1063/1.2829861.
  • Chipot C, Pohorille A, editors. Free energy calculations. Berlin Heidelberg: Springer-Verlag; 2007.
  • Sidky H, Whitmer JK. Elastic response and phase behavior in binary liquid crystal mixtures. Soft Matter. 2016;12:4489–4498. doi:10.1039/C5SM03107A.
  • Cleaver DJ, Allen MP. Computer simulations of the elastic properties of liquid crystals. Phys Rev A. 1991;43(4):1918–1931. doi:10.1103/PhysRevA.43.1918.
  • Stelzer J, Longa L, Trebin HR. Elastic constants of nematic liquid crystals from molecular dynamics simulations. Mol Cryst Liq Cryst A. 1995;262(1):455–461. doi:10.1080/10587259508033547.
  • Stelzer J, Longa L, Trebin H-R. Molecular dynamics simulations of a Gay-Berne nematic liquid crystal: elastic properties from direct correlation functions. J Chem Phys. 1995;103(8):3098. doi:10.1063/1.470268.
  • Phuong NH, Germano G, Schmid F. Elastic constants from direct correlation functions in nematic liquid crystals: a computer simulation study. J Chem Phys. 2001;115(15):7227–7234. doi:10.1063/1.1404388.
  • Frenkel D, Smit B. Understanding molecular simulation. San Diego (CA): Academic Press; 2002.
  • Janosi L, Doxastakis M. Accelerating at-histogram methods for potential of mean force calculations. J Chem Phys. 2009;131(5):054105. doi:10.1063/1.3183165.
  • Sidky H, Sikora BJ. SAPHRON - A lightweight C++11 Monte Carlo molecular simulation engine. 2016. Available from: https://github.com/hsidky/SAPHRON
  • Madhusudana NV, Pratibha R. Elasticity and orientational order in some cyanobiphenyls: part IV. Reanalysis of the data. Mol Cryst Liq Cryst. 1982;89(1–4):249–257. doi:10.1080/00268948208074481.
  • De Gennes PG, Prost J. The physics of liquid crystals. New York (NY): Clarendon Press: Oxford; 1993.
  • Caprion D, Bellier-Castella L, Ryckaert JP. Inuence of shape and energy anisotropies on the phase diagram of discotic molecules. Phys Rev E. 2003;67(4 Pt 1):041703. doi:10.1103/PhysRevE.67.041703.
  • Tinh NH, Gasparoux H, Destrade C. An homologous series of disc-like mesogens with nematic and columnar polymorphism. Mol Cryst Liq Cryst. 1981;68(1):101–111. doi:10.1080/00268948108073557.
  • Bates M, Luckhurst GR. Computer simulation studies of anisotropic systems. 26. Monte Carlo investigations of a Gay–Berne discotic at constant pressure. J Chem Phys. 1996;104(17):6696–6709. doi:10.1063/1.471387.
  • Kats EI, Monastyrsky MI. Ordering in discotic liquid crystals. J Phys France. 1984;45(4):709–714. doi:10.1051/jphys:01984004504070900.
  • Osipov M, Hess S. The elastic constants of nematic and nematic discotic liquid crystals with perfect local orientational order. Mol Phys. 1993;78(5):1191–1201. doi:10.1080/00268979300100781.
  • Bisoyi HK, Kumar S. Discotic nematic liquid crystals: science and technology. Chem Soc Rev. 2010;39(1):264–285. doi:10.1039/B901792P.
  • Raghunathan VA, Madhusudana NV, Chandrasekhar S, et al. Bend and splay elastic constants of a discotic nematic. Mol Cryst Liq Cryst. 1987;148(1):77–83. doi:10.1080/00268948708071780.
  • Heppke G, Ranft A, Sabaschus B. Bend and splay elastic constants of some discotic nematic compounds. Mol Cryst Liq Cryst Lett. 1991;8(1):17–25.
  • Venkata Sai D, Mirri G, Kouwer PHJ, et al. Unusual temperature dependence of elastic constants of an ambient-temperature discotic nematic liquid crystal. Soft Matter. 2016;12(11):2960–2964. doi:10.1039/C6SM00065G.
  • Phillips TJ, Jones JC, McDonnell DG. On the influence of short range order upon the physical properties of triphenylene nematic discogens. Liq Cryst. 1993;15(2):203–215. doi:10.1080/02678299308031951.
  • Berardi R, Orlandi S, Zannoni C. Monte Carlo simulation of discotic Gay–Berne mesogens with axial dipole. J Chem Soc, Faraday Trans. 1997;93:1493–1496. doi:10.1039/a607571a.
  • Maier W, Saupe A. Eine einfache molekular-statistische Theorie der nematischen kristallinüssigen phase. Teil II. Z Naturforsch Phys Sci. 1960 Jan;15(4):287–292.
  • Poniewierski A, Stecki J. Statistical theory of the Frank elastic constants. Phys Rev A. 1982 Apr;25:2368–2370. doi:10.1103/PhysRevA.25.2368.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.