507
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Influence of electrostatic interactions on the properties of cyanobiphenyl liquid crystals predicted from atomistic molecular dynamics simulations

, &
Pages 332-347 | Received 27 May 2016, Accepted 13 Jun 2016, Published online: 29 Jun 2016

References

  • Gray GW, Harrison KJ, Nash JA. New family of nematic liquid crystals for displays. Electron Lett. 1973;9:130–131. doi:10.1049/el:19730096.
  • Dunmur DA. The magic of cyanobiphenyls: celebrity molecules. Liq Cryst. 2015;42:678–687.
  • Tanaka S, Kato C, Horie K. Observation of various conformers of 4-cyano-4ʹ-alkylbiphenyl by IR spectroscopy and density functional theory calculations. J Mol Struct. 2005;735:27–37. doi:10.1016/j.molstruc.2004.11.008.
  • Demus D, Inukai T. Calculation of molecular, dielectric and optical properties of 4ʹ-n-pentyl-4-cyano-biphenyl (5CB). Liq Cryst. 1999;26:1257–1266. doi:10.1080/026782999203922.
  • Zgura I, Moldovan R, Beica T, et al. Temperature dependence of the density of some liquid crystals in the alkyl cyanobiphenyl series. Cryst Res Technol. 2009;44:883–888. doi:10.1002/crat.200900162.
  • Musevic I, Skarabot M, Tkalec U, et al. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science (80-). 2006;313:954–958. doi:10.1126/science.1129660.
  • Xia Y, Verduzco R, Grubbs RH, et al. Well-defined liquid crystal gels from telechelic polymers. J Am Chem Soc. 2008;130:1735–1740. doi:10.1021/ja077192j.
  • Kempe MD, Scruggs NR, Verduzco R, et al. Self-assembled liquid-crystalline gels designed from the bottom up. Nat Mater. 2004;3:177–182. doi:10.1038/nmat1074.
  • Raynes EP, Sage IC. Chemicals to calculators: the early exploitation of cyanobiphenyl liquid crystals. Liq Cryst. 2015;42:1–10. doi:10.1080/02678292.2015.1024766.
  • Glaser M. Atomistic simulation and modeling of smectic liquid crystals. In: Pasini P, Zannoni C, editors. Advances in the Computer Simulatons of Liquid Crystals. Dordrecht: Springer; 2000. p. 263–331.
  • Oweimreen GA, Morsy MA. DSC studies on p-(n-alkyl)-p’-cyanobiphenyl (RCB’s) and p-(n-alkoxy)-p’-cyanobiphenyl (ROCB’s) liquid crystals. Thermochimica Acta. 2000;346:37–47. doi:10.1016/S0040-6031(99)00411-6.
  • Mansaré T, Decressain R, Gors C, et al. Phase transformations and dynamics of 4-cyano-4′-pentylbiphenyl (5CB) by nuclear magnetic resonance, analysis differential scanning calorimetry, and wideangle x-ray diffraction analysis. Mol Cryst Liq Cryst. 2002;382:97–111. doi:10.1080/713738756.
  • Picken SJ, de Jeu WH. Switching the dipole moment for 5CB on and off. Liq Cryst. 2006;33:1359–1371. doi:10.1080/02678290601119781.
  • Gay JG, Berne BJ. Modification of the overlap potential to mimic a linear site–site potential. J Chem Phys. 1981;74:3316–3319. doi:10.1063/1.441483.
  • Brown J, Allen M, Martín del Río E, et al. Effects of elongation on the phase behavior of the Gay-Berne fluid. Phys Rev E. 1998;57:6685–6699. doi:10.1103/PhysRevE.57.6685.
  • Bates MA, Zannoni C. A molecular dynamics simulation study of the nematic-isotropic interface of a Gay-Berne liquid crystal. Chem Phys Lett. 1997;280:40–45. doi:10.1016/S0009-2614(97)01089-0.
  • Cuetos A, Ilnytskyi JM, Wilson MR. Rotational viscosities of gay-berne mesogens. Mol Phys. 2002;100:3839–3845. doi:10.1080/0026897021000028410.
  • Izvekov S, Violi A, Voth GA. Systematic coarse-graining of nanoparticle interactions in molecular dynamics simulation. J Phys Chem B. 2005;109:17019–17024. doi:10.1021/jp0530496.
  • Marrink SJ, Risselada HJ, Yefimov S, et al. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111:7812–7824. doi:10.1021/jp071097f.
  • Zhang J, Su J, Ma Y, et al. Coarse-grained molecular dynamics simulations of the phase behavior of the 4-cyano-4ʹ-pentylbiphenyl liquid crystal system. J Phys Chem B. 2012;116:2075–2089. doi:10.1021/jp210764h.
  • Megariotis G, Vyrkou A, Leygue A, et al. Systematic coarse graining of 4-cyano-4′-pentylbiphenyl. Ind Eng Chem Res. 2011;50:546–556. doi:10.1021/ie901957r.
  • Zhang J, Guo H. Transferability of coarse-grained force field for nCB liquid crystal systems. J Phys Chem B. 2014;118:4647–4660. doi:10.1021/jp411615f.
  • Zhang J, Su J, Guo H. An atomistic simulation for 4-cyano-4ʹ-pentylbiphenyl and its homologue with a reoptimized force field. J Phys Chem B. 2011;115:2214–2227. doi:10.1021/jp111408n.
  • Stevensson B, Komolkin AV, Sandström D, et al. Structure and molecular ordering extracted from residual dipolar couplings: a molecular dynamics simulation study. J Chem Phys. 2001;114:2332–2339. doi:10.1063/1.1337046.
  • Cross CW, Fung BM. A simplified approach to molecular dynamics simulations of liquid crystals with atom–atom potentials. J Chem Phys. 1994;101:6839–6848. doi:10.1063/1.468313.
  • Komolkin AV, Laaksonen A, Maliniak A. Molecular dynamics simulation of a nematic liquid crystal. J Chem Phys. 1994;101:4103–4116. doi:10.1063/1.467460.
  • Wang Z, Lupo JA, Patnaik S, et al. Large scale molecular dynamics simulations of a 4-n-pentyl-4ʹ-cyanobiphenyl (5CB) liquid crystalline model in the bulk and as a droplet. Comput Theor Polym Sci. 2001;11:375–387. doi:10.1016/S1089-3156(01)00017-4.
  • Chami F, Wilson MR, Oganesyan VS. Molecular dynamics and EPR spectroscopic studies of 8CB liquid crystal. Soft Matter. 2012;8:6823–6833. doi:10.1039/c2sm25429h.
  • Lansac Y, Glaser M, Clark N. Microscopic structure and dynamics of a partial bilayer smectic liquid crystal. Phys Rev E. 2001;64:1–12. doi:10.1103/PhysRevE.64.051703.
  • McBride C, Wilson MR. Molecular dynamics simulations of a flexible liquid crystal. Mol Phys. 1999;97:511–522. doi:10.1080/00268979909482851.
  • Cacelli I, Campanile S, Prampolini G, et al. Stability of the nematic phase of 4-n-pentyl-4[sup ʹ]-cyanobiphenyl studied by computer simulation using a hybrid model. J Chem Phys. 2002;117:448–453. doi:10.1063/1.1482702.
  • Amovilli C, Cacelli I, Campanile S, et al. Calculation of the intermolecular energy of large molecules by a fragmentation scheme: application to the 4-n-pentyl-4ʹ-cyanobiphenyl (5CB) dimer. J Chem Phys. 2002;117:3003–3012. doi:10.1063/1.1494799.
  • Cacelli I, Prampolini G, Tani A. Atomistic simulation of a nematogen using a force field derived from quantum chemical calculations. J Phys Chem B. 2005;109:3531–3538. doi:10.1021/jp045716l.
  • Cacelli I, De Gaetani L, Prampolini G, et al. Liquid crystal properties of the n-alkyl-cyanobiphenyl series from atomistic simulations with Ab initio derived force fields. J Phys Chem B. 2007;111:2130–2137. doi:10.1021/jp065806l.
  • Cifelli M, De Gaetani L, Prampolini G, et al. Atomistic computer simulation and experimental study on the dynamics of the n-cyanobiphenyls mesogenic series. J Phys Chem B. 2007;112:9777–9786. doi:10.1021/jp802935q.
  • Sinton S, Pines A. Study of liquid crystal conformation by multiple quantum NMR: n-pentyl cyanobiphenyl. Chem Phys Lett. 1980;76:263–267. doi:10.1016/0009-2614(80)87017-5.
  • Tiberio G, Muccioli L, Berardi R, et al. Towards in silico liquid crystals. Realistic transition temperatures and physical properties for n-cyanobiphenyls via molecular dynamics simulations. Chem Phys Chem. 2009;10:125–136. doi:10.1002/cphc.200800231.
  • Weiner SJ, Kollman PA, Case DA, et al. A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc. 1984;106:765–784. doi:10.1021/ja00315a051.
  • Martin MG, Siepmann JI. Transferable potentials for phase equilibria. 1. united-atom description of n -alkanes. J Phys Chem B. 1998;102:2569–2577.
  • Borodin O. Polarizable force field development and molecular dynamics simulations of ionic liquids. J Phys Chem B. 2009;113:11463–11478. doi:10.1021/jp905220k.
  • Bedrov D, Borodin O, Li Z, et al. Influence of polarization on structural, thermodynamic, and dynamic properties of ionic liquids obtained from molecular dynamics simulations. J Phys Chem B. 2010;114:4984–4997. doi:10.1021/jp911670f.
  • Wang Y, Xing L, Li W, et al. Why do sulfone-based electrolytes show stability at high voltages? insight from density functional theory. J Phys Chem Lett. 2013;4:3992–3999. doi:10.1021/jz401726p.
  • Bedrov D, Smith GD, van Duin ACT. Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: a molecular dynamics simulation study using the ReaxFF. J Phys Chem A. 2012;116:2978–2985. doi:10.1021/jp210345b.
  • Xing L, Vatamanu J, Borodin O, et al. Electrode/electrolyte interface in sulfolane-based electrolytes for Li ion batteries: a molecular dynamics simulation study. J Phys Chem C. 2012;116:23871–23881. doi:10.1021/jp3054179.
  • Starovoytov ON, Borodin O, Bedrov D, et al. Development of a polarizable force field for molecular dynamics simulations of poly(ethylene oxide) in aqueous solution. J Chem Theory Comput. 2011;7:1902–1915. doi:10.1021/ct200064u.
  • Hooper JB, Starovoytov ON, Borodin O, et al. Molecular dynamics simulation studies of the influence of imidazolium structure on the properties of imidazolium/azide ionic liquids. J Chem Phys. 2012;136:194506. doi:10.1063/1.4718800.
  • Bedrov D, Borodin O. Thermodynamic, dynamic, and structural properties of ionic liquids comprised of 1-butyl-3-methylimidazolium cation and nitrate, azide, or dicyanamide anions. J Phys Chem B. 2010;114:12802–12810. doi:10.1021/jp1049827.
  • Borodin O, Bedrov D. Interfacial structure and dynamics of the lithium alkyl dicarbonate SEI components in contact with the lithium battery electrolyte. J Phys Chem C. 2014;118:18362–18371. doi:10.1021/jp504598n.
  • Bedrov D, Borodin O, Smith GD, et al. A molecular dynamics simulation study of crystalline 1,3,5-triamino-2,4,6-trinitrobenzene as a function of pressure and temperature. J Chem Phys. 2009;131:224703. doi:10.1063/1.3264972.
  • Hooper JB, Smith GD, Bedrov D. Thermophysical properties of energetic ionic liquids∕nitric acid mixtures: insights from molecular dynamics simulations. J Chem Phys. 2013;139:104503. doi:10.1063/1.4819903.
  • Frisch MJ, Trucks GW. Gaussian 09. Wallingford (CT): Gaussian, Inc; 2009.
  • Borodin O, Smith GD. Development of many-body polarizable force fields for li-battery applications : 1. ether, alkane, and carbonate-based solvents. J Phys Chem B. 2006;110:6279–6292. doi:10.1021/jp055079e.
  • De Gaetani L, Prampolini G. Computational study through atomistic potentials of a partial bilayer liquid crystal: structure and dynamics. Soft Matter. 2009;5:3517–3526. doi:10.1039/b908413d.
  • Palermo MF, Pizzirusso A, Muccioli L, et al. An atomistic description of the nematic and smectic phases of 4-n-octyl-4′ cyanobiphenyl (8CB). J Chem Phys. 2013;138:204901. doi:10.1063/1.4804270.
  • Olivier Y, Muccioli L, Zannoni C. Quinquephenyl: the simplest rigid-rod-like nematic liquid crystal, or is it? an atomistic simulation. Chem Phys Chem. 2014;15:1345–1355. doi:10.1002/cphc.201301126.
  • Wilson MR. Molecular simulation of liquid crystals: progress towards a better understanding of bulk structure and the prediction of material properties. Chem Soc Rev. 2007;36:1881–1888. doi:10.1039/b612799c.
  • Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh ewald method. J Chem Phys. 1995;103:8577–8593. doi:10.1063/1.470117.
  • Palmer BJ. Direct application of shake to the velocity verlet algorithm. J Comput Phys. 1993;104:470–472. doi:10.1006/jcph.1993.1045.
  • Martyna GJ, Tuckerman ME, Tobias DJ, et al. Explicit reversible integrators for extended systems dynamics. Mol Phys. 1996;87:1117–1157. doi:10.1080/00268979600100761.
  • Kobinata S, Kobayashi T, Yoshida H, et al. Molecular conformation and orientational order in nCB liquid crystals. J Mol Struct. 1986;146:373–382. doi:10.1016/0022-2860(86)80305-2.
  • Collings PJ, Hird M. Introduction to liquid crystals: chemistry and physics. Boca Raton (FL): CRC Press; 1997.
  • Sanchez-Castillo A, Osipov MA, Giesselmann F. Orientational order parameters in liquid crystals: a comparative study of x-ray diffraction and polarized Raman spectroscopy results. Phys Rev E. 2010;81:021707. doi:10.1103/PhysRevE.81.021707.
  • de Gennes PG, Prost J. The physics of liquid crystals. 2nd ed. Oxford: Clarendon Press; 1995.
  • Chandrasekhar S. Liquid crystals. Cambridge: Cambridge University Press; 1992.
  • Deschamps J, Trusler JPM, Jackson G. Vapor pressure and density of thermotropic liquid crystals: MBBA, 5CB, and novel fluorinated mesogens. J Phys Chem B. 2008;112:3918–3926. doi:10.1021/jp711211w.
  • Picken SJ, Van Gunsteren WF, Duijnen PTV, et al. A molecular dynamics study of the nematic phase of 4-n-pentyl-4′-cyanobiphenyl. Liq Cryst. 1989;6:357–371. doi:10.1080/02678298908029087.
  • De Gaetani L, Prampolini G, Tani A. Modeling a liquid crystal dynamics by atomistic simulation with an ab initio derived force field. J Phys Chem B. 2006;110:2847–2854. doi:10.1021/jp0542930.
  • Adam CJ, Clark SJ, Wilson MR. Transferability of first principles derived torsional potentials for mesogenic molecules and fragments. Mol Phys. 1998;93:947–954. doi:10.1080/00268979809482281.
  • Onsager L. The effects of shape on the interaction of colloidal particles. Ann N Y Acad Sci. 1949;51:627–659. doi:10.1111/j.1749-6632.1949.tb27296.x.
  • Gueu KP, Megnassan E, Proutiere A. Dipole moments of 4-n alkyl-4′-cyanobiphenyl molecules (from OCB to 12CB) measurement in four solvents and theoretical calculations. Mol Cryst Liq Cryst. 1986;132:303–323. doi:10.1080/00268948608079550.
  • Raynes EP. The measurement of molecular dipole moments of liquid crystals. Mol Cryst Liq Cryst Lett. 1985;1:69–74.
  • Emsley JW, Luckhurst GR, Stockley CP. The deuterium and proton-{deuterium} N.M.R. spectra of the partially deuteriated nematic liquid crystal 4-n-pentyl-4′-cyanobiphenyl. Mol Phys. 1981;44:565–580. doi:10.1080/00268978100102651.
  • Dvinskikh SV, Furó I, Zimmermann H, et al. Anisotropic self-diffusion in thermotropic liquid crystals studied by 1H and2H pulse-field-gradient spin-echo NMR. Phys Rev E. 2002;65:061701. doi:10.1103/PhysRevE.65.061701.
  • Dvinskikh SV, Furó I. Anisotropic self-diffusion in the nematic phase of a thermotropic liquid crystal by 1H-spin-echo nuclear magnetic resonance. J Chem Phys. 2001;115:1946–1950. doi:10.1063/1.1381059.
  • Romanova EE, Grinberg F, Pampel A, et al. Diffusion studies in confined nematic liquid crystals by MAS PFG NMR. J Magn Reson. 2009;196:110–114. doi:10.1016/j.jmr.2008.10.015.
  • Ilg P. Anisotropic diffusion in nematic liquid crystals and in ferrofluids. Phys Rev E. 2005;71:051407. doi:10.1103/PhysRevE.71.051407.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.