270
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow

, , , , , & show all
Pages 372-378 | Received 07 Jun 2016, Accepted 20 Jun 2016, Published online: 11 Jul 2016

References

  • John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett. 1987 Jun 8;58:2486–2489. Epub 1987 Jun 08. doi:10.1103/PhysRevLett.58.2486
  • Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett. 1987 May 18;58:2059–2062. Epub 1987 May 18. doi:10.1103/PhysRevLett.58.2059
  • Kopp VI, Fan B, Vithana HK, et al. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt Lett. 1998 Nov 1;23:1707–1709. Epub 2007 Dec 20. doi:10.1364/OL.23.001707
  • Coles H, Morris S. Liquid-crystal lasers. Nat Photonics. 2010 Oct;4:676–685. doi:10.1038/nphoton.2010.184
  • Penninck L, Beeckman J, De Visschere P, et al. Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films. J Appl Phys. 2013;113:063106. doi:10.1063/1.4790873.
  • Schmidtke J, Jünnemann G, Keuker-Baumann S, et al. Electrical fine tuning of liquid crystal lasers. Appl Phys Lett. 2012;101:051117. doi:10.1063/1.4739840.
  • Chanishvili A, Chilaya G, Petriashvili G, et al. Phototunable lasing in dye-doped cholesteric liquid crystals. Appl Phys Lett. 2003;83:5353–5355. doi:10.1063/1.1636818.
  • Huang Y, Zhou Y, Doyle C, et al. Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility. Opt Express. 2006 Feb 6;14:1236–1242. Epub 2006 Feb 06. doi:10.1364/OE.14.001236
  • Morris SM, Ford AD, Pivnenko MN, et al. Enhanced emission from liquid-crystal lasers. J Appl Phys. 2005;97:023103. doi:10.1063/1.1829144.
  • Lin T-H, Chen Y-J, Wu C-H, et al. Cholesteric liquid crystal laser with wide tuning capability. Appl Phys Lett. 2005;86:161120. doi:10.1063/1.1897439.
  • Wang C-T, Lin T-H. Multi-wavelength laser emission in dye-doped photonic liquid crystals. Opt Express. 2008 Oct 27;16:18334–18339. Epub 2008 Oct 30. doi:10.1364/OE.16.018334
  • Nys I, Beeckman J, Neyts K. One- and two-dimensional liquid crystal structures for lasing applications. Proc SPIE. 2015;9565:956513. doi:10.1117/12.2188003.
  • Adams J, Haas W, Wysocki J. Light scattering properties of cholesteric liquid crystal films. Mol Crystals. 1969 Jun 01;8:9–18. doi:10.1080/15421406908084894.
  • Helfrich W. Capillary flow of cholesteric and smectic liquid crystals. Phys Rev Lett. 1969 Aug 18;23:372–374. doi:10.1103/PhysRevLett.23.372.
  • Ciliberti DF, Dixon GD, Scala LC. Shear effects on cholesteric liquid crystals. Mol Cryst Liq Cryst. 1973 Feb 01;20:27–36. doi:10.1080/15421407308083296.
  • Kini U.D. Shear flow of cholesterics normal to the helical axis. J De Phys Colloques. 1979;40:C3-62-C3-6.
  • Bartolino R, Simoni F, Scaramuzza N. Preliminary results on the elastooptic behavior of a cholesteric liquid crystal. Mol Cryst Liq Cryst. 1981 Aug 01;70:315–322. doi:10.1080/00268948108073597.
  • Scaramuzza N, Carbone V, Barberi R. Dynamical response of cholesteric liquid crystals to mechanical shearing deformations. Mol Cryst Liq Cryst. 1991 Jan 01;195:31–37. doi:10.1080/00268949108030887.
  • Derfel G. Shear flow induced cholesteric-nematic transition. Mol Cryst Liq Cryst. 1983 Jan 01;92:41–47. doi:10.1080/01406568308084517.
  • Rey AD. Flow alignment in the helix uncoiling of sheared cholesteric liquid crystals. Phys Rev E. 1996 Apr 01;53:4198–4201. doi:10.1103/PhysRevE.53.4198.
  • Alaverdyan RB, Dadalyan TK. Chiral photonic structures with anisotropic defect controlled by hydrodynamic flow. Armenian J Phys. 2013;6:55–60.
  • Pochan JM, Marsh DG. Effect of thickness on the layer structure of grandjean texture in a sheared cholesteric liquid crystal. J Chem Phys. 1972;57:5154–5156. doi:10.1063/1.1678204.
  • Shibaev PV, Rivera P, Teter D, et al. Color changing and lasing stretchable cholesteric films. Opt Express. 2008 Mar 03;16:2965–2970. doi:10.1364/OE.16.002965.
  • Cicuta P, Tajbakhsh AR, Terentjev EM. Photonic gaps in cholesteric elastomers under deformation. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jul;70:011703. Epub 2004 Aug 25. doi:10.1103/PhysRevE.70.011703
  • Serra F, Matranga MA, Ji Y, et al. Single-mode laser tuning from cholesteric elastomers using a “notch” band-gap configuration. Opt Express. 2010 Jan 18;18:575–581. Epub 2010 Feb 23. doi:10.1364/OE.18.000575
  • Varanytsia A, Nagai H, Urayama K, et al. Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain. Sci Rep. 2015;5:17739. Epub 2015 Dec 05. doi:10.1038/srep17739
  • Schäfer FP, editor. Dye lasers. Berlin Heidelberg: Springer-Verlag; 1990.
  • Morris SM, Ford AD, Pivnenko MN, et al. The effects of reorientation on the emission properties of a photonic band edge liquid crystal laser. J Opt A: Pure Appl Opt. 2005;7:215. doi:10.1088/1464-4258/7/5/002.
  • Chilaya G, Chanishvili A, Petriashvili G, et al. Enhancing cholesteric liquid crystal laser stability by cell rotation. Opt Express. 2006 Oct 16;14:9939–9943. doi:10.1364/OE.14.009939.
  • Lavrentovich OD, Kleman M, editor. Cholesteric liquid crystals: defects and topology. New York (NY): Springer; 2001.
  • Jeong M-Y, Wu JW. Continuous spatial tuning of laser emissions with tuning resolution less than 1 nm in a wedge cell of dye-doped cholesteric liquid crystals. Opt Express. 2010 Nov 8;18:24221–24228. Epub 2010 Dec 18. doi:10.1364/OE.18.024221
  • Jeong M-Y, Choi H, Wu JW. Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell. Appl Phys Lett. 2008;92:051108. doi:10.1063/1.2841820.
  • Sheng-Chieh C, Jia-De L, Chia-Rong L, et al. Multi-wavelength laser tuning based on cholesteric liquid crystals with nanoparticles. J Phys D Appl Phys. 2016;49:165102. doi:10.1088/0022-3727/49/16/165102.
  • Ozaki R, Shinpo T, Moritake H. Improvement of orientation of planar cholesteric liquid crystal by rapid thermal processing. Appl Phys Lett. 2008;92:163304. doi:10.1063/1.2913686.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.