1,488
Views
38
CrossRef citations to date
0
Altmetric
Invited Article

Liquid crystal phases in confined geometries

&
Pages 1951-1972 | Received 29 Apr 2016, Published online: 15 Jul 2016

References

  • Park M, Harrison C, Chaikin PM, et al. Block copolymer lithography: periodic arrays of 1011 holes in 1 square centimeter. Science. 1997;276:1401–1404. doi:10.1126/science.276.5317.1401.
  • Segalman RA, Yokoyama H, Kramer EJ. Graphoepitaxy of spherical domain block copolymer films. Adv Mater. 2001;13:1152–1155. doi:10.1002/(ISSN)1521-4095.
  • Yoon DK, Choi MC, Kim YH, et al. Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals. Nat Mater. 2007;6:866–870. doi:10.1038/nmat2029.
  • Ruiz R, Kang H, Detcheverry FA, et al. Density multiplication and improved lithography by directed block copolymer assembly. Science. 2008;321:936–939. doi:10.1126/science.1157626.
  • Kim YH, Yoon DK, Jeong HS, et al. Self-assembled periodic liquid crystal defects array for soft lithographic template. Soft Matter. 2010;6:1426–1431.
  • Schmidt-Mende L, Fechtenkötter A, Müllen K, et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science. 2001;293:1119–1122.
  • Briseno AL, Mannsfeld SC, Ling MM, et al. Patterning organic single-crystal transistor arrays. Nature. 2006;444:913–917.
  • Woltman SJ, Jay GD, Crawford GP. Liquid-crystal materials find a new order in biomedical applications. Nat Mater. 2007;6:929–938.
  • Coursault D, Grand J, Zappone B, et al. Linear self-assembly of nanoparticles within liquid crystal defect arrays. Adv Mater. 2012;24:1461–1465.
  • Kim DS, Honglawan A, Kim K, et al. Fabrication of periodic nanoparticle clusters using a soft lithographic template. J Mater Chem C. 2015;3:4598–4602. doi:10.1039/C5TC00687B.
  • Kléman M, Laverntovich OD. Soft matter physics: an introduction. New York (NY): Springer; 2003.
  • Schadt M. Voltage-dependent optical activity of a twisted nematic liquid crystal. Appl Phys Lett. 1971;18:127–128. doi:10.1063/1.1653593.
  • Busch K, John S. Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum. Phys Rev Lett. 1999;83:967–970. doi:10.1103/PhysRevLett.83.967.
  • van Oosten CL, Bastiaansen CW, Broer DJ. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater. 2009;8:677–682. doi:10.1038/nmat2487.
  • Kim H, Yi Y, Chen D, et al. Self-assembled hydrophobic surface generated from a helical nanofilament (B4) liquid crystal phase. Soft Matter. 2013;9:2793–2797. doi:10.1039/c3sm27221d.
  • Kim H, Kim YH, Lee S, et al. Orientation control over bent-core smectic liquid crystal phases. Liq Cryst. 2013;41:328–341. doi:10.1080/02678292.2013.817618.
  • Kahn FJ. Electric-field-induced orientational deformation of nematic liquid crystals: tunable birefringence. Appl Phys Lett. 1972;20:199–201. doi:10.1063/1.1654107.
  • Brochard F, Pieranski P, Guyon E. Dynamics of the orientation of a nematic-liquid-crystal film in a variable magnetic field. Phys Rev Lett. 1972;28:1681–1683. doi:10.1103/PhysRevLett.28.1681.
  • Geary JM, Goodby JW, Kmetz AR, et al. The mechanism of polymer alignment of liquid-crystal materials. J Appl Phys. 1987;62:4100–4108. doi:10.1063/1.339124.
  • Drawhorn RA, Abbott NL. Anchoring of nematic liquid crystals on self-assembled monolayers formed from alkanethiols on semitransparent films of gold. J Phys Chem. 1995;99:16511–16515. doi:10.1021/j100045a004.
  • Ichimura K. Photoalignment of liquid-crystal systems. Chem Rev. 2000;100:1847–1874. doi:10.1021/cr980079e.
  • Kim H, Lee S, Shin TJ, et al. Alignment of helical nanofilaments on the surfaces of various self-assembled monolayers. Soft Matter. 2013;9:6185–6191. doi:10.1039/c3sm50637a.
  • Kim K, Kim H, Jo SY, et al. Photomodulated supramolecular chirality in achiral photoresponsive rodlike compounds nanosegregated from the helical nanofilaments of achiral bent-core molecules. ACS Appl Mater Inter. 2015;7:22686–22691. doi:10.1021/acsami.5b07543.
  • Grigoriadis C, Duran H, Steinhart M, et al. Suppression of phase transitions in a confined rodlike liquid crystal. ACS Nano. 2011;5:9208–9215. doi:10.1021/nn203448c.
  • Ohm C, Haberkorn N, Theato P, et al. Template-based fabrication of nanometer-scaled actuators from liquid-crystalline elastomers. Small. 2011;7:194–198. doi:10.1002/smll.201001315.
  • Jerome B. Surface effects and anchoring in liquid crystals. Rep Prog Phys. 1991;54:391–451. doi:10.1088/0034-4885/54/3/002.
  • Ichimura K, Suzuki Y, Seki T, et al. Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer. Langmuir. 1988;4:1214–1216. doi:10.1021/la00083a030.
  • Stöhr J, Samant M, Lüning J, et al. Liquid crystal alignment on carbonaceous surfaces with orientational order. Science. 2001;292:2299–2302. doi:10.1126/science.1059866.
  • Ho JYL, Chigrinov VG, Kwok HS. Variable liquid crystal pretilt angles generated by photoalignment of a mixed polyimide alignment layer. Appl Phys Lett. 2007;90:243506. doi:10.1063/1.2748345.
  • Malone SM, Schwartz DK. Macroscopic liquid crystal response to isolated DNA helices. Langmuir. 2011;27:11767–11772. doi:10.1021/la202640a.
  • Luk Y-Y, Abbott NL. Surface-driven switching of liquid crystals using redox-active groups on electrodes. Science. 2003;301:623–626. doi:10.1126/science.1084527.
  • Nakata M, Zanchetta G, Buscaglia M, et al. Liquid crystal alignment on a chiral surface: interfacial interaction with sheared DNA films. Langmuir. 2008;24:10390–10394. doi:10.1021/la800639x.
  • Michel JP, Lacaze E, Alba M, et al. Optical gratings formed in thin smectic films frustrated on a single crystalline substrate. Phys Rev E. 2004;70:011709. doi:10.1103/PhysRevE.70.011709.
  • Ryu SH, Gim M-J, Cha YJ, et al. Creation of liquid-crystal periodic zigzags by surface treatment and thermal annealing. Soft Matter. 2015;11:8584–8589. doi:10.1039/C5SM01989C.
  • Cha YJ, Gim M-J, Oh K, et al. In-plane switching mode for liquid crystal displays using a DNA alignment layer. ACS Appl Mater Inter. 2015;7:13627–13632. doi:10.1021/acsami.5b03321.
  • Cha YJ, Gim M-J, Oh K, et al. Twisted-nematic-mode liquid crystal display with a DNA alignment layer. J Inf Dis. 2015;16:129–135. doi:10.1080/15980316.2015.1072114.
  • Lacaze E, Michel JP, Goldmann M, et al. Bistable nematic and smectic anchoring in the liquid crystal octylcyanobiphenyl (8CB) adsorbed on a MoS2 single crystal. Phys Rev E. 2004;69:041705. doi:10.1103/PhysRevE.69.041705.
  • Choi MC, Pfohl T, Wen Z, et al. Ordered patterns of liquid crystal toroidal defects by microchannel confinement. Proc Natl Acad Sci USA. 2004;101:17340–17344. doi:10.1073/pnas.0407925101.
  • Kim JH, Kim YH, Jeong HS, et al. Highly ordered defect arrays of 8CB (4′-n-octyl-4-cyano-biphenyl) liquid crystal via template-assisted self-assembly. J Mater Chem. 2011;21:18381–18385. doi:10.1039/c2sm26701b.
  • Honglawan A, Beller DA, Cavallaro M, et al. Pillar-assisted epitaxial assembly of toric focal conic domains of smectic-a liquid crystals. Adv Mater. 2011;23:5519–5523. doi:10.1002/adma.201103008.
  • Honglawan A, Beller DA, Cavallaro M, et al. Topographically induced hierarchical assembly and geometrical transformation of focal conic domain arrays in smectic liquid crystals. Proc Natl Acad Sci USA. 2013;110:34–39. doi:10.1073/pnas.1214708109.
  • Yoon DK, Yi Y, Shen Y, et al. Orientation of a helical nanofilament (B4) liquid-crystal phase: topographic control of confinement, shear flow, and temperature gradients. Adv Mater. 2011;23:1962–1967. doi:10.1002/adma.201004482.
  • Yoon DK, Smith GP, Tsai E, et al. Alignment of the columnar liquid crystal phase of nano-DNA by confinement in channels. Liq Cryst. 2012;39:571–577. doi:10.1080/02678292.2012.666809.
  • Cattle J, Bao P, Bramble JP, et al. Controlled planar alignment of discotic liquid crystals in microchannels made using SU8 photoresist. Adv Funct Mater. 2013;23:5997–6006. doi:10.1002/adfm.201301613.
  • Shams A, Yao X, Park JO, et al. Theory and simulation of ovoidal disclination loops in nematic liquid crystals under conical confinement. Liq Cryst. 2015;42:506–519. doi:10.1080/02678292.2015.1006153.
  • Yoon DK, Yoon J, Kim YH, et al. Liquid-crystal periodic zigzags from geometrical and surface-anchoring-induced confinement: origin and internal structure from mesoscopic scale to molecular level. Phys Rev E. 2010;82:041705.
  • Kim YH, Yoon DK, Choi M, et al. Confined self-assembly of toric focal conic domains (the effects of confined geometry on the feature size of toric focal conic domains). Langmuir. 2009;25:1685–1691.
  • Ohzono T, Fukuda J. Zigzag line defects and manipulation of colloids in a nematic liquid crystal in microwrinkle grooves. Nat Comm. 2012;3:701. doi:10.1038/ncomms1709.
  • Xia Y, Serra F, Kamien RD, et al. Direct mapping of local director field of nematic liquid crystals at the nanoscale. Proc Natl Acad Sci USA. 2015;112:15291–15296. doi:10.1073/pnas.1513348112.
  • Ohzono T, Fukuda J-I. Transition of frustrated nematic order and fluctuation of topological defects in microwrinkle grooves. Soft Matter. 2012;8:11552–11556. doi:10.1039/c2sm26701b.
  • Sengupta A, Pieper C, Enderlein J, et al. Flow of a nematogen past a cylindrical micro-pillar. Soft Matter. 2013;9:1937–1946.
  • Shojaei-Zadeh S, Anna SL. Role of surface anchoring and geometric confinement on focal conic textures in smectic-A liquid crystals. Langmuir. 2006;22:9986–9993.
  • Sheng P. Phase transition in surface-aligned nematic films. Phys Rev Lett. 1976;37:1059–1062.
  • Miyano K. Wall-induced pretransitional birefringence: a new tool to study boundary aligning forces in liquid crystals. Phys Rev Lett. 1979;43:51–54.
  • Foster J, Frommer J. Imaging of liquid crystals using a tunnelling microscope. Nature. 1988;333:542–545.
  • Smith D, Hörber H, Gerber C, et al. Smectic liquid crystal monolayers on graphite observed by scanning tunneling microscopy. Science. 1989;245:43–45.
  • Hara M, Iwakabe Y, Tochigi K, et al. Anchoring structure of smectic liquid-crystal layers on MoS2 observed by scanning tunnelling microscopy. Nature. 1990;344:228–230.
  • Frommer J. Scanning tunneling microscopy and atomic force microscopy in organic chemistry. Angew Chem Int Ed. 1992;31:1298–1328.
  • Cyr DM, Venkataraman B, Flynn GW. STM investigations of organic molecules physisorbed at the liquid-solid interface. Chem Mater. 1996;8:1600–1615.
  • Katsonis N, Lacaze E, Feringa BL. Molecular chirality at fluid/solid interfaces: expression of asymmetry in self-organised monolayers. J Mater Chem. 2008;18:2065–2073.
  • Lacaze E, Alba M, Goldmann M, et al. Dimerization in the commensurate network of 4-n-octyl-4ʹ-cyanobiphenyl (8CB) molecules adsorbed on MoS2 single crystal. Eur Phys J B. 2004;39:261–272.
  • Stevens F, Patrick D, Cee V, et al. Transition from epitaxial to nonepitaxial ordered monolayers in pyrolyzed 8CB studied by STM. Langmuir. 1998;14:2396–2401.
  • Smith D, Hörber J, Binnig G, et al. Structure, registry and imaging mechanism of alkylcyanobiphenyl molecules by tunnelling microscopy. Nature. 1990;344:641–644.
  • Biradar A, Wrobel S, Haase W. Dielectric relaxation in the smectic-A* and smectic-C* phases of a ferroelectric liquid crystal. Phys Rev A. 1989;39:2693–2702. doi:10.1103/PhysRevA.39.2693.
  • Daillant J, Zalczer G, Benattar JJ. Spreading of smectic-adroplets: structure and dynamics of terraces. Phys Rev A. 1992;46:R6158–R6161.
  • Valignat M, Villette S, Li J, et al. Wetting and anchoring of a nematic liquid crystal on a rough surface. Phys Rev Lett. 1996;77:1994–1997.
  • Itaya A, Watanabe K, Imamura T, et al. Vacuum-deposited films of liquid crystal molecules of cyanooctyloxybiphenyl electronic spectra of the films and structural transformation of the deposited films as revealed by insitu fluorescence measurements. Thin Solid Films. 1997;292:204–212.
  • Lucht R, Bahr C. Surface plasmon resonance study of the spreading of a liquid-crystal smectic-A droplet on a gold substrate. Phys Rev Lett. 2000;85:4080–4083.
  • Xu L, Salmeron M, Bardon S. Wetting and molecular orientation of 8CB on silicon substrates. Phys Rev Lett. 2000;84:1519–1522.
  • Schulz B, Bahr C. Surface structure of ultrathin smectic films on silicon substrates: pores and islands. Phys Rev E. 2011;83:041710.
  • Xue J, Jung CS, Kim MW. Phase transitions of liquid-crystal films on an air-water interface. Phys Rev Lett. 1992;69:474–477.
  • De Mul MN, Mann JJA. Multilayer formation in thin films of thermotropic liquid crystals at the air-water interface. Langmuir. 1994;10:2311–2316.
  • Harke M, Ibn-Elhaj M, Möhwald H, et al. Polar ordering of smectic liquid crystals within the interfacial region. Phys Rev E. 1998;57:1806.
  • Bardon S, Ober R, Valignat M, et al. Organization of cyanobiphenyl liquid crystal molecules in prewetting films spreading on silicon wafers. Phys Rev E. 1999;59:6808.
  • Drevensek Olenik I, Kocevar K, Musevic I, et al. Structure and polarity of 8CB films evaporated onto solid substrates. Eur Phys J E. 2003;11:169–175.
  • Vandenbrouck F, Bardon S, Valignat M, et al. Wetting transition and divergence of the extrapolation length near the nematic-isotropic transition. Phys Rev Lett. 1998;81:610–613.
  • Delabre U, Richard C, Cazabat AM. Some specificities of wetting by cyanobiphenyl liquid crystals. J Phys: Condens Matter. 2009;21:464129.
  • Kočevar K, Blinc R, Muševič I. Atomic force microscope evidence for the existence of smecticlike surface layers in the isotropic phase of a nematic liquid crystal. Phys Rev E. 2000;62:R3055–R3058.
  • Kocevar K, Borstnik A, Musevic I, et al. Capillary condensation of a nematic liquid crystal observed by force spectroscopy. Phys Rev Lett. 2001;86:5914–5917.
  • Kocevar K, Musevic I. Surface-induced nematic and smectic order at a liquid-crystal-silanated-glass interface observed by atomic force spectroscopy and Brewster angle ellipsometry. Phys Rev E. 2002;65:021703.
  • Borstnik Bracic A, Kocevar K, Musevic I, et al. Capillary forces in a confined isotropic-nematic liquid crystal. Phys Rev E. 2003;68:011708.
  • Carbone G, Barberi R, Musevic I, et al. Atomic force microscope study of presmectic modulation in the nematic and isotropic phases of the liquid crystal octylcyanobiphenyl using piezoresistive force detection. Phys Rev E. 2005;71:051704.
  • Kocevar K, Musevic I. Forces in the isotropic phase of a confined nematic liquid crystal 5CB. Phys Rev E. 2001;64:051711.
  • Kocevar K, Musevic I. Structural forces near phase transitions of liquid crystals. Chemphyschem. 2003;4:1049–1056.
  • Crawford GP, Yang DK, Zumer S, et al. Ordering and self-diffusion in the first molecular layer at a liquid-crystal-polymer interface. Phys Rev Lett. 1991;66:723–726.
  • Crawford GP, Steele LM, Ondris-Crawford R, et al. Characterization of the cylindrical cavities of Anopore and Nuclepore membranes. J Chem Phys. 1992;96:7788–7796.
  • Bellini T, Clark NA, Muzny CD, et al. Phase behavior of the liquid crystal 8CB in a silica aerogel. Phys Rev Lett. 1992;69:788–791.
  • Kutnjak Z, Kralj S, Lahajnar G, et al. Calorimetric study of octylcyanobiphenyl liquid crystal confined to a controlled-pore glass. Phys Rev E. 2003;68:021705.
  • Li AP, Muller F, Birner A, et al. Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J Appl Phys. 1998;84:6023–6026.
  • Nielsch K, Choi J, Schwirn K, et al. Self-ordering regimes of porous alumina: the 10 porosity rule. Nano Lett. 2002;2:677–680.
  • Crawford GP, Ondris-Crawford RJ, Doane JW, et al. Systematic study of orientational wetting and anchoring at a liquid-crystal-surfactant interface. Phys Rev E. 1996;53:3647–3661.
  • Crawford GP, Vilfan M, Doane JW, et al. Escaped-radial nematic configuration in submicrometer-size cylindrical cavities: deuterium nuclear-magnetic-resonance study. Phys Rev A. 1991;43:835–842.
  • Crawford GP, Allender DW, Doane JW, et al. Finite molecular anchoring in the escaped-radial nematic configuration: a 2H-NMR study. Phys Rev A. 1991;44:2570–2577.
  • Allender DW, Crawford GP, Doane JW. Determination of the liquid-crystal surface elastic constant K24. Phys Rev Lett. 1991;67:1442–1445.
  • Crawford GP, Allender DW, Doane JW. Surface elastic and molecular-anchoring properties of nematic liquid crystals confined to cylindrical cavities. Phys Rev A. 1992;45:8693–8708.
  • Ondris-Crawford RJ, Crawford GP, Doane JW, et al. Surface molecular anchoring in microconfined liquid crystals near the nematic–smectic-A transition. Phys Rev E. 1993;48:1998–2005.
  • Ondris-Crawford RJ, Crawford GP, Zumer S, et al. Curvature-induced configuration transition in confined nematic liquid crystals. Phys Rev Lett. 1993;70:194–197.
  • Zeng H, Finotello D. Anisotropy-induced liquid-crystal configurational transitions. Phys Rev Lett. 1998;81:2703–2706.
  • Iannacchione GS, Finotello D. Calorimetric study of phase transitions in confined liquid crystals. Phys Rev Lett. 1992;69:2094–2097.
  • Iannacchione GS, Finotello D. Specific heat dependence on orientational order at cylindrically confined liquid crystal phase transitions. Phys Rev E. 1994;50:4780–4795.
  • Meier G, Saupe A. Dielectric relaxation in nematic liquid crystals. Mol Cryst Liq Cryst. 1966;1:515–525.
  • Jadżyn J, Czechowski G, Douali R, et al. On the molecular interpretation of the dielectric relaxation of nematic liquid crystals. Liq Cryst. 2010;26:1591–1597. doi:10.1080/026782999203571.
  • Haase W, Wróbel S. Relaxation phenomena. Liquid crystals, magnetic systems, polymers, high-TC superconductors, metallic glasses. Berlin-Heidelberg: Springer-Verlag; 2003.
  • Jadzyn J, Hellemans L, Czechowski G, et al. Dielectric and viscous properties of 6CHBT in the isotropic and nematic phases. Liq Cryst. 2000;27:613–619. doi:10.1080/026782900202453.
  • Bengoechea MR, Aliev FM. Dielectric relaxation in thin liquid crystal layers formed on cylindrical pore walls. J Non-Cryst Solids. 2005;351:2685–2689. doi:10.1016/j.jnoncrysol.2005.04.079.
  • Różański SA, Kremer F, Groothues H, et al. The dielectric properties of nematic liquid crystal, 5CB confined to treated and untreated Anopore membranes. Mol Cryst Liq Cryst. 1997;303:319–324. doi:10.1080/10587259708039441.
  • Leys J, Sinha G, Glorieux C, et al. Influence of nanosized confinements on 4-n-decyl-4ʹ-cyanobiphenyl (10CB): a broadband dielectric study. Phys Rev E. 2005;71:051709. doi:10.1103/PhysRevE.71.051709.
  • Diez S, Jubindo MAP, De La Fuente R, et al. Dielectric relaxation in bulk and cylindrically confined octylcyanobiphenyl (8CB). Liq Cryst. 2006;33:1083–1091. doi:10.1080/02678290600930956.
  • Sinha G, Aliev F. Dielectric spectroscopy of liquid crystals in smectic, nematic, and isotropic phases confined in random porous media. Phys Rev E. 1998;58:2001–2010. doi:10.1103/PhysRevE.58.2001.
  • Adam D, Schuhmacher P, Simmerer J, et al. Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature. 1994;371:141–143. doi:10.1038/371141a0.
  • Adam D, Closs F, Frey T, et al. Transient photoconductivity in a discotic liquid crystal. Phys Rev Lett. 1993;70:457–460. doi:10.1103/PhysRevLett.70.457.
  • Feng X, Marcon V, Pisula W, et al. Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nat Mater. 2009;8:421–426. doi:10.1038/nmat2427.
  • Wöhrle T, Wurzbach I, Kirres J, et al. Discotic liquid crystals. Chem Rev. 2016;116:1139–1241. doi:10.1021/acs.chemrev.5b00190.
  • Steinhart M, Zimmermann S, Göring P, et al. Liquid crystalline nanowires in porous alumina: geometric confinement versus influence of pore walls. Nano Lett. 2005;5:429–434. doi:10.1021/nl0481728.
  • Duran H, Hartmann-Azanza B, Steinhart M, et al. Arrays of aligned supramolecular wires by macroscopic orientation of columnar discotic mesophases. ACS Nano. 2012;6:9359–9365. doi:10.1021/nn302937t.
  • Cerclier CV, Ndao M, Busselez R, et al. Structure and phase behavior of a discotic columnar liquid crystal confined in nanochannels. J Phys Chem C. 2012;116:18990–18998. doi:10.1021/jp303690q.
  • Krause C, Schönhals A. Phase transitions and molecular mobility of a discotic liquid crystal under nanoscale confinement. J Phys Chem C. 2013;117:19712–19720. doi:10.1021/jp406010d.
  • Kityk AV, Busch M, Rau D, et al. Thermotropic orientational order of discotic liquid crystals in nanochannels: an optical polarimetry study and a Landau-de Gennes analysis. Soft Matter. 2014;10:4522–4534. doi:10.1039/C4SM00211C.
  • Zhang R, Zeng X, Prehm M, et al. Honeycombs in honeycombs: complex liquid crystal alumina composite mesostructures. ACS Nano. 2014;8:4500–4509. doi:10.1021/nn406368e.
  • Zhang R, Zeng X, Kim B, et al. Columnar liquid crystals in cylindrical nanoconfinement. ACS Nano. 2015;9:1759–1766. doi:10.1021/nn506605p.
  • Tsukruk V, Wendorff J, Karthaus O, et al. Packing of columns in Langmuir-Blodgett films of discotic mixtures with charge-transfer interactions. Langmuir. 1993;9:614–618. doi:10.1021/la00026a042.
  • Kruglova O, Mendes E, Yildirim Z, et al. Structure and dynamics of a discotic liquid-crystalline charge-transfer complex. Chemphyschem. 2007;8:1338–1344. doi:10.1002/cphc.200700134.
  • Mitov M, Dessaud N. Going beyond the reflectance limit of cholesteric liquid crystals. Nat Mater. 2006;5:361–364. doi:10.1038/nmat1619.
  • Chang C-K, Bastiaansen CMW, Broer DJ, et al. Alcohol-responsive, hydrogen-bonded, cholesteric liquid-crystal networks. Adv Funct Mater. 2012;22:2855–2859. doi:10.1002/adfm.201200362.
  • Mitov M. Cholesteric liquid crystals with a broad light reflection band. Adv Mater. 2012;24:6260–6276. doi:10.1002/adma.201202913.
  • Saha A, Tanaka Y, Han Y, et al. Irreversible visual sensing of humidity using a cholesteric liquid crystal. Chem Comm. 2012;48:4579–4581. doi:10.1039/c2cc16934g.
  • Ondris-Crawford RJ, Ambrožič M, Doane JW, et al. Pitch-induced transition of chiral nematic liquid crystals in submicrometer cylindrical cavities. Phys Rev E. 1994;50:4773–4779. doi:10.1103/PhysRevE.50.4773.
  • Ambrožič M, Žumer S. Chiral nematic liquid crystals in cylindrical cavities. Phys Rev E. 1996;54:5187–5197. doi:10.1103/PhysRevE.54.5187.
  • Link DR, Natale G, Shao R, et al. Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules. Science. 1997;278:1924–1927. doi:10.1126/science.278.5345.1924.
  • Walba DM, Körblova E, Shao R, et al. A ferroelectric liquid crystal conglomerate composed of racemic molecules. Science. 2000;288:2181–2184. doi:10.1126/science.288.5474.2181.
  • Coleman D, Fernsler J, Chattham N, et al. Polarization-modulated smectic liquid crystal phases. Science. 2003;301:1204–1211. doi:10.1126/science.1084956.
  • Takezoe H, Takanishi Y. Bent-core liquid crystals: their mysterious and attractive world. Jpn J Appl Phys. 2006;45:597–625. doi:10.1143/JJAP.45.597.
  • Reddy RA, Tschierske C. Bent-core liquid crystals: polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems. J Mater Chem. 2006;16:907–961. doi:10.1039/B504400F.
  • Hough LE, Spannuth M, Nakata M, et al. Chiral isotropic liquids from achiral molecules. Science. 2009;325:452–456. doi:10.1126/science.1170028.
  • Reddy RA, Zhu C, Shao R, et al. Spontaneous ferroelectric order in a bent-core smectic liquid crystal of fluid orthorhombic layers. Science. 2011;332:72–77. doi:10.1126/science.1197248.
  • Hough L, Jung H, Krüerke D, et al. Helical nanofilament phases. Science. 2009;325:456–460. doi:10.1126/science.1170027.
  • Rastegar A, Wulterkens G, Verscharen H, et al. A shear cell for aligning and measuring birefringence of bow-shaped (banana) liquid crystals. Rev Sci Instrum. 2000;71:4492–4496. doi:10.1063/1.1288238.
  • Araoka F, Sugiyama G, Ishikawa K, et al. Highly ordered helical nanofilament assembly aligned by a nematic director field. Adv Funct Mater. 2013;23:2701–2707. doi:10.1002/adfm.201201889.
  • Zep A, Sitkowska K, Pociecha D, et al. Photoresponsive helical nanofilaments of B 4 phase. J Mater Chem C. 2014;2:2323–2327. doi:10.1039/c3tc32325k.
  • Zhang C, Diorio N, Lavrentovich O, et al. Helical nanofilaments of bent-core liquid crystals with a second twist. Nat Comm. 2014;5:3302.
  • Chen D, Maclennan JE, Shao R, et al. Chirality-preserving growth of helical filaments in the B4 phase of bent-core liquid crystals. J Am Chem Soc. 2011;133:12656–12663. doi:10.1021/ja203522x.
  • Kim H, Lee S, Shin TJ, et al. Multistep hierarchical self-assembly of chiral nanopore arrays. Proc Natl Acad Sci USA. 2014;111:14342–14347. doi:10.1073/pnas.1414840111.
  • Lee S, Kim H, Tsai E, et al. Multidimensional helical nanostructures in multiscale nanochannels. Langmuir. 2015;31:8156–8161. doi:10.1021/acs.langmuir.5b01620.
  • Lee S, Kim H, Shin TJ, et al. Physico-chemical confinement of helical nanofilaments. Soft Matter. 2015;11:3653–3659. doi:10.1039/C5SM00417A.
  • Chen D, Heberling M-S, Nakata M, et al. Structure of the B4 liquid crystal phase near a glass surface. Chemphyschem. 2012;13:155–159. doi:10.1002/cphc.201100589.
  • Ryu SH, Kim H, Lee S, et al. Nucleation and growth of a helical nanofilament (B4) liquid-crystal phase confined in nanobowls. Soft Matter. 2015;11:7778–7782. doi:10.1039/C5SM01783A.
  • Maeda T, Hiroshima K. Vertically aligned nematic liquid crystal on anodic porous alumina. Jpn J Appl Phys. 2004;43:L1004–L1006. doi:10.1143/JJAP.43.L1004.
  • Lazarouk S, Muravski A, Sasinovich D, et al. Porous and pillar structures formed by anodization for vertical alignment of nematic liquid crystal. Jpn J Appl Phys. 2007;46:6889–6892. doi:10.1143/JJAP.46.6889.
  • Tang -T-T, Kuo C-Y, Pan R-P, et al. Strong vertical alignment of liquid crystal on porous anodic aluminum oxide film. J Disp Technol. 2009;5:350–354. doi:10.1109/JDT.2009.2021541.
  • Tang -T-T, Li C-H, Pan R-P. Alignment properties of liquid crystal on etched anodic aluminum oxide film. Mol Cryst Liq Cryst. 2011;544:100/[1088]–111/[1099]. doi:10.1080/15421406.2011.569282.
  • Ryu SH, Yoon DK. Molecular orientation of liquid crystals on topographic nanopatterns. ACS Appl Mater Inter. 2016. doi:10.1021/acsami.6b05568.
  • Hong C, Tang T-T, Hung C-Y, et al. Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications. Nanotechnology. 2010;21:285201. doi:10.1088/0957-4484/21/28/285201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.