1,477
Views
40
CrossRef citations to date
0
Altmetric
Invited Article

Curvature and defects in nematic liquid crystals

Pages 1920-1936 | Received 01 May 2016, Published online: 27 Jul 2016

References

  • Whitesides GM, Grzybowski B. Self-assembly at all scales. Science. 2002;295(5564):2418–2421. doi:10.1126/science.1070821.
  • Yi GR, Pine DJ, Sacanna S. Recent progress on patchy colloids and their self-assembly. J Phys Condens Matter. 2013;25(19):193101. doi:10.1088/0953-8984/25/19/193101.
  • Blanc C, Coursault D, Lacaze E. Ordering nano- and microparticles assemblies with liquid crystals. Liq Cryst Rev. 2013;1(2):83–109. doi:10.1080/21680396.2013.818515.
  • Chuang I, Durrer R, Turok N, et al. Cosmology in the laboratory: defect dynamics in liquid crystals. Science. 1991;251(4999):1336–1342. doi:10.1126/science.251.4999.1336.
  • Bowick MJ, Chandar L, Schiff EA, et al. The cosmological kibble mechanism in the laboratory: string formation in liquid crystals. Science. 1994;263(5149):943–945. doi:10.1126/science.263.5149.943.
  • de Gennes PG, Prost J. The physics of liquid crystals. 2nd ed. Oxford: Clarendon Press; 1974.
  • Kleman M, Lavrentovich OD. Topological point defects in nematic liquid crystals. Phil Mag. 2006;86(25–26):4117–4137. doi:10.1080/14786430600593016.
  • Kleman M. Defects in liquid crystals. Rep Prog Phys. 1989;52(5):555. doi:10.1088/0034-4885/52/5/002.
  • Chandrasekhar S, Ranganath G. The structure and energetics of defects in liquid crystals. Adv Phys. 1986;35(6):507–596. doi:10.1080/00018738600101941.
  • Stark H. Director field configurations around a spherical particle in a nematic liquid crystal. Eur Phys J B. 1999;10(2):311–321. doi:10.1007/s100510050860.
  • Poulin P, Stark H, Lubensky TC, et al. Novel colloidal interactions in anisotropic fluids. Science. 1997;275(5307):1770–1773. doi:10.1126/science.275.5307.1770.
  • Senyuk B, Liu Q, He S, et al. Topological colloids. Nature. 2013;493:200–205. doi:10.1038/nature11710.
  • Martinez A, Ravnik M, Lucero B, et al. Mutually tangled colloidal knots and induced defect loops in nematic fields. Nat Mater. 2014;13:258–263. doi:10.1038/nmat3840.
  • Murray BS, Pelcovits RA, Rosenblatt C. Creating arbitrary arrays of two-dimensional topological defects. Phys Rev E. 2014;90:052501. doi:10.1103/PhysRevE.90.052501.
  • Fernández-Nieves A, Vitelli V, Utada AS, et al. Novel defect structures in nematic liquid crystal shells. Phys Rev Lett. 2007;99(Oct):157801. doi:10.1103/PhysRevLett.99.157801.
  • Ohzono T, Fukuda JI. Transition of frustrated nematic order and fluctuation of topological defects in microwrinkle grooves. Soft Matter. 2012;8:11552–11556. doi:10.1039/c2sm26701b.
  • Ware TH, McConney ME, Wie JJ, et al. Voxelated liquid crystal elastomers. Science. 2015;347(6225):982–984. doi:10.1126/science.1261019.
  • Fleury JB, Pires D, Galerne Y. Self-connected 3D architecture of microwires. Phys Rev Lett. 2009;103:267801. doi:10.1103/PhysRevLett.103.267801.
  • DeBenedictis A, Atherton TJ, Anquetil-Deck C, et al. Competition of lattice and basis for alignment of nematic liquid crystals. Phys Rev E. 2015;92:042501. doi:10.1103/PhysRevE.92.042501.
  • Lavrentovich OD. Topological defects in dispersed words and worlds around liquid crystals, or liquid crystal drops. Liq Cryst. 1998;24(1):117–126. doi:10.1080/026782998207640.
  • Lopez-Leon T, Koning V, Devalah K, et al. Frustrated nematic order in spherical geometries. Nat Phys. 2011;7:391–394. doi:10.1038/nphys1920.
  • Gharbi MA, Seč D, Lopez-Leon T, et al. Microparticles confined to a nematic liquid crystal shell. Soft Matter. 2013;9:6911–6920. doi:10.1039/c3sm00126a.
  • Pairam E, Vallamkondu J, Koning V, et al. Stable nematic droplets with handles. Proc Natl Acad Sci. 2013;110(23):9295–9300. doi:10.1073/pnas.1221380110.
  • Gwag JS, Fukuda JI, Yoneya M, et al. In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief. Appl Phys Lett. 2007;91(7):073504. doi:10.1063/1.2769946.
  • Jones JC, Bryan-Brown GP, Wood EL, et al. Novel bistable liquid crystal displays based on grating alignment. Proc SPIE Int Soc Opt Eng. 2000;3955:84–93.
  • Cattaneo L, Zhang J, Zuiddam M, et al. Gaining control through frustration: two-fold approach for liquid crystal three-dimensional command layers. Nano Lett. 2014;14(7):3903–3907. doi:10.1021/nl501155h.
  • Irvine WTM, Vitelli V, Chaikin PM. Colloidal crystals on curved oil-glycerol interfaces. Nature. 2010;468:947–951. doi:10.1038/nature09620.
  • Irvine WTM, Bowick MJ, Chaikin PM. Fractionalization of interstitials in curved colloidal crystals. Nat Mater. 2012;11:948–951. doi:10.1038/nmat3429.
  • López-Jiménez F, Stoop N, Lagrange R, et al. Curvature-controlled defect localization in elastic surface crystals. Phys Rev Lett. 2016;116:104301. doi:10.1103/PhysRevLett.116.104301.
  • Frank FC. I. Liquid crystals. On the theory of liquid crystals. Discuss Faraday Soc. 1958;25:19–28. doi:10.1039/df9582500019.
  • Jesenek D, Kralj S, Rosso R, et al. Defect unbinding on a toroidal nematic shell. Soft Matter. 2015;11:2434–2444. doi:10.1039/C4SM02540G.
  • Silvestre NM, Patricio P, Telo da Gama MM. Key-lock mechanism in nematic colloidal dispersions. MPhys Rev E. 2004;69:061402. doi:10.1103/PhysRevE.69.061402.
  • Eskandari Z, Silvestre NM, Telo Da Gama MM, et al. Particle selection through topographic templates in nematic colloids. Soft Matter. 2014;10:9681–9687. doi:10.1039/C4SM02231A.
  • Araki T, Buscaglia M, Bellini T, et al. Memory and topological frustration in nematic liquid crystals confined in porous materials. Nat Mater. 2011;10:303–309. doi:10.1038/nmat2982.
  • Lapointe CP, Mason TG, Smalyukh II. Shape-controlled colloidal interactions in nematic liquid crystals. Science. 2009;326(5956):1083–1086. doi:10.1126/science.1176587.
  • Dontabhaktuni J, Ravnik M, Žumer S. Shape-tuning the colloidal assemblies in nematic liquid crystals. Soft Matter. 2012;8:1657–1663. doi:10.1039/C2SM06577K.
  • Nguyen TS, Geng J, Selinger RLB, et al. Nematic order on a deformable vesicle: theory and simulation. Soft Matter. 2013;9:8314–8326. doi:10.1039/c3sm50489a.
  • Lin IH, Miller DS, Bertics PJ, et al. Endotoxin-induced structural transformations in liquid crystalline droplets. Science. 2011;332(6035):1297–1300. doi:10.1126/science.1195639.
  • Alexander GP, Chen BG, Matsumoto EA, et al. Colloquium: disclination loops, point defects, and all that in nematic liquid crystals. Rev Mod Phys. 2012;84:497–514. doi:10.1103/RevModPhys.84.497.
  • Mermin ND. The topological theory of defects in ordered media. Rev Mod Phys. 1979;51:591–648. doi:10.1103/RevModPhys.51.591.
  • Pershin VK, Klebanov II, Zalmanov PB. Point defects and ring defects in a nematic liquid crystal in a cylindrical capillary. Tech Phys. 1999;44(7):763–766. doi:10.1134/1.1259343.
  • Terentjev EM. Disclination loops, standing alone and around solid particles, in nematic liquid crystals. Phys Rev E. 1995;51:1330–1337. doi:10.1103/PhysRevE.51.1330.
  • Gu Y, Abbott NL. Observation of saturn-ring defects around solid microspheres in nematic liquid crystals. Phys Rev Lett. 2000;85:4719–4722. doi:10.1103/PhysRevLett.85.4719.
  • Loudet J, Mondain-Monval O, Poulin P. Line defect dynamics around a colloidal particle. Eur Phys J E. 2002;7(3):205–208. doi:10.1007/s10189-002-8232-z.
  • Loudet JC, Poulin P. Application of an electric field to colloidal particles suspended in a liquid-crystal solvent. Phys Rev Lett. 2001;87:165503. doi:10.1103/PhysRevLett.87.165503.
  • Čopar S, Žumer S. Nematic braids: topological invariants and rewiring of disclinations. Phys Rev Lett. 2011;106:177801. doi:10.1103/PhysRevLett.106.177801.
  • Smalyukh II, Kuzmin AN, Kachynski AV, et al. Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal. Appl Phys Lett. 2005;86(2):021913. doi:10.1063/1.1849839.
  • Osterman N, Kotar J, Terentjev EM, et al. Relaxation kinetics of stretched disclination lines in a nematic liquid crystal. Phys Rev E. 2010;81:061701. doi:10.1103/PhysRevE.81.061701.
  • Shams A, Yao X, Park JO, et al. Disclination elastica model of loop collision and growth in confined nematic liquid crystals. Soft Matter. 2015;11:5455–5464. doi:10.1039/C5SM00708A.
  • Kamien RD. The geometry of soft materials: a primer. Rev Mod Phys. 2002;74:953–971. doi:10.1103/RevModPhys.74.953.
  • Bates MA, Skačej G, Zannoni C. Defects and ordering in nematic coatings on uniaxial and biaxial colloids. Soft Matter. 2010;6:655–663. doi:10.1039/B917180K.
  • Lubensky TC, Prost J. Orientational order and vesicle shape. J Phys II France. 1992;2(3):371–382. doi:10.1051/jp2:1992133.
  • Vitelli V, Turner AM. Anomalous coupling between topological defects and curvature. Phys Rev Lett. 2004;93:215301. doi:10.1103/PhysRevLett.93.215301.
  • Napoli G, Vergori L. Extrinsic curvature effects on nematic shells. Phys Rev Lett. 2012;108:207803. doi:10.1103/PhysRevLett.108.207803.
  • Castle T, Cho Y, Gong X, et al. Making the cut: lattice Kirigami rules. Phys Rev Lett. 2014;113:245502. doi:10.1103/PhysRevLett.113.245502.
  • Stein DL. Topological theorem and its applications to condensed matter systems. Phys Rev. 1979;19:1708–1711. doi:10.1103/PhysRevA.19.1708.
  • Serra F, Vishnubhatla KC, Buscaglia M, et al. Topological defects of nematic liquid crystals confined in porous networks. Soft Matter. 2011;7:10945–10950. doi:10.1039/c1sm05813d.
  • Wang W, Hashimoto T. Application of topological theorems to studies of coalescence and ordering processes in nematic droplets. J Phys Soc Japan. 1996;65(12):3896–3900. doi:10.1143/JPSJ.65.3896.
  • Keber FC, Loiseau E, Sanchez T, et al. Topology and dynamics of active nematic vesicles. Science. 2014;345(6201):1135–1139. doi:10.1126/science.1254784.
  • Cavallaro M Jr., Gharbi MA, Beller DA, et al. Exploiting imperfections in the bulk to direct assembly of surface colloids. Proc Natl Acad Sci. 2013;110(47):18804–18808. doi:10.1073/pnas.1313551110.
  • Gharbi MA, Cavallaro M Jr., Wu G, et al. Microbullet assembly: interactions of oriented dipoles in confined nematic liquid crystal. Liq Cryst. 2013;40(12):1619–1627. doi:10.1080/02678292.2012.755223.
  • Beller DA, Gharbi MA, Liu IB. Shape-controlled orientation and assembly of colloids with sharp edges in nematic liquid crystals. Soft Matter. 2015;11:1078–1086. doi:10.1039/C4SM01910E.
  • Phillips PM, Rey AD. Texture formation mechanisms in faceted particles embedded in a nematic liquid crystal matrix. Soft Matter. 2011;7:2052–2063. doi:10.1039/c0sm01245a.
  • Sacanna S, Irvine WTM, Chaikin PM, et al. Lock and key colloids. Nature. 2010;464:575–578. doi:10.1038/nature08906.
  • Koenig PM, Roth R, Dietrich S. Lock and key model system. Europhys Lett. 2008;84(6):68006. doi:10.1209/0295-5075/84/68006.
  • Othman M, Bouchemal K, Couvreur P, et al. A comprehensive study of the spontaneous formation of nanoassemblies in water by a lock-and-key interaction between two associative polymers. J Colloid Interface Sci. 2011;354(2):517–527. doi:10.1016/j.jcis.2010.11.015.
  • Schwyzer R. 100 years lock-and-key concept: are peptide keys shaped and guided to their receptors by the target cell membrane? Biopolymers. 1995;37(1):5–16. doi:10.1002/(ISSN)1097-0282.
  • Morrison JL, Breitling R, Higham DJ, et al. A lock-and-key model for protein protein interactions. Bioinformatics. 2006;22(16):2012–2019. doi:10.1093/bioinformatics/btl338.
  • Csermely P, Palotai R, Nussinov R. Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem Sci. 2010;35(10):539–546. doi:10.1016/j.tibs.2010.04.009.
  • Hung FR, Gettelfinger BT, Koenig GM, et al. Nanoparticles in nematic liquid crystals: interactions with nanochannels. J Chem Phys. 2007;127(12):124702. doi:10.1063/1.2770724.
  • Luo Y, Serra F, Beller DA, et al. Around the corner: colloidal assembly and wiring in groovy nematic cells. Phys Rev E. 2016;93:032705. doi:10.1103/PhysRevE.93.032705.
  • Silvestre NM, Liu Q, Senyuk B, et al. Towards template-assisted assembly of nematic colloids. Phys Rev Lett. 2014;112:225501. doi:10.1103/PhysRevLett.112.225501.
  • Luo Y, Serra F, Stebe KJ. Experimental realization of the “lock-and-key” mechanism in liquid crystals; Soft Matter. 2016;12:6027–6032. doi:10.1039/C6SM00401F.
  • Peng C, Guo Y, Conklin C, et al. Liquid crystals with patterned molecular orientation as an electrolytic active medium. Phys Rev E. 2015;92:052502. doi:10.1103/PhysRevE.92.052502.
  • Sengupta A, Bahr C, Herminghaus S. Topological microfluidics for flexible micro-cargo concepts. Soft Matter. 2013;9:7251–7260. doi:10.1039/c3sm50677k.
  • Wang Y, Wang Y, Zheng X, et al. Three-dimensional lock and key colloids. J Am Chem Soc. 2014;136(19):6866–6869. doi:10.1021/ja502699p.
  • Ohzono T, Fukuda JI. Zigzag line defects and manipulation of colloids in a nematic liquid crystal in microwrinkle grooves. Nat Commun. 2012;3:701. doi:10.1038/ncomms1709.
  • Tasinkevych M, Mondiot F, Mondain-Monval O, et al. Dispersions of ellipsoidal particles in a nematic liquid crystal. Soft Matter. 2014;10:2047–2058. doi:10.1039/c3sm52708e.
  • Zhou S, Sokolov A, Lavrentovich OD, et al. Living liquid crystals. Proc Natl Acad Sci. 2014;111(4):1265–1270. doi:10.1073/pnas.1321926111.
  • Mushenheim PC, Trivedi RR, Tuson HH, et al. Dynamic self-assembly of motile bacteria in liquid crystals. Soft Matter. 2014;10:88–95. doi:10.1039/C3SM52423J.
  • Damasceno PF, Engel M, Glotzer SC. Predictive self-assembly of polyhedra into complex structures. Science. 2012;337(6093):453–457. doi:10.1126/science.1220869.
  • Damasceno PF, Engel M, Glotzer SC. Crystalline assemblies and densest packings of a family of truncated tetrahedra and the role of directional entropic forces. ACS Nano. 2012;6(1):609–614. doi:10.1021/nn204012y.
  • Mirantsev LV, de Oliveira EJL, de Oliveira IN, et al. Defect structures in nematic liquid crystal shells of different shapes. Liq Cryst Rev. 2016;4(1):35–58. doi:10.1080/21680396.2016.1183151.
  • Jeong J, Davidson ZS, Collings PJ, et al. Chiral symmetry breaking and surface faceting in chromonic liquid crystal droplets with giant elastic anisotropy. Proc Natl Acad Sci. 2014;111(5):1742–1747. doi:10.1073/pnas.1315121111.
  • Tasinkevych M, Campbell MG, Smalyukh II. Splitting, linking, knotting, and solitonic escape of topological defects in nematic drops with handles. Proc Natl Acad Sci. 2014;111(46):16268–16273. doi:10.1073/pnas.1405928111.
  • Aguirre LE, de Oliveira A, Seč D, et al. Sensing surface morphology of biofibers by decorating spider silk and cellulosic filaments with nematic microdroplets. Proc Natl Acad Sci. 2016;113(5):1174–1179. doi:10.1073/pnas.1518739113.
  • Batista VMO, Silvestre NM, Telo Da Gama MM. Nematic droplets on fibers. Phys Rev E. 2015;92:062507. doi:10.1103/PhysRevE.92.062507.
  • Gupta JK, Zimmerman JS, de Pablo JJ, et al. Characterization of adsorbate-induced ordering transitions of liquid crystals within monodisperse droplets. Langmuir. 2009;25(16):9016–9024. doi:10.1021/la900786b.
  • Rahimi M, Roberts TF, Armas-Perez JC, et al. Nanoparticle self-assembly at the interface of liquid crystal droplets. Proc Natl Acad Sci. 2015;112(17):5297–5302. doi:10.1073/pnas.1422785112.
  • Soule ER, Rey AD. Hedgehog defects in mixtures of a nematic liquid crystal and a non-nematogenic component. Soft Matter. 2012;8:1395–1403. doi:10.1039/C1SM06741A.
  • Tran L, Lavrentovich MO, Beller DA, et al. Lassoing saddle-splay: geometrical control of topological defects. Proc Natl Acad Sci. 2016;113:7106–7111. doi:10.1073/pnas.1602703113.
  • Davidson ZS, Kang L, Jeong J, et al. Chiral structures and defects of lyotropic chromonic liquid crystals induced by saddle-splay elasticity. Phys Rev E. 2015;91:050501. doi:10.1103/PhysRevE.91.050501.
  • Nayani K, Chang R, Fu J, et al. Spontaneous emergence of chirality in achiral lyotropic chromonic liquid crystals confined to cylinders. Nat Commun. 2015;6:8067. doi:10.1038/ncomms9067.
  • Koning V, van Zuiden BC, Kamien RD, et al. Saddle-splay screening and chiral symmetry breaking in toroidal nematics. Soft Matter. 2014;10:4192–4198. doi:10.1039/c4sm00076e.
  • Kralj S, Žumer S. Saddle-splay elasticity of nematic structures confined to a cylindrical capillary. Phys Rev E. 1995;51:366–379. doi:10.1103/PhysRevE.51.366.
  • Erdmann JH, Žumer S, Doane JW. Configuration transition in a nematic liquid crystal confined to a small spherical cavity. Phys Rev Lett. 1990;64:1907–1910. doi:10.1103/PhysRevLett.64.1907.
  • Lavrentovich OD, Ishikawa T, Terentjev EM. Disclination loop in mori-nakanishi ansatz: role of the divergence elasticity. Mol Cryst Liq Cryst. 1997;299(1):301–306. doi:10.1080/10587259708042008.
  • Wang X, Miller DS, Bukusoglu E, et al. Topological defects in liquid crystals as templates for molecular self-assembly. Nat Mater. 2016;15:106–112. doi:10.1038/nmat4421.
  • Kos Z, Ravnik M. Relevance of saddle-splay elasticity in complex nematic geometries. Soft Matter. 2016;12:1313–1323. doi:10.1039/C5SM02417J.
  • Lavrentovich OD, Nastishin YA. Defects in degenerate hybrid aligned nematic liquid crystals. Europhys Lett. 1990;12(2):135–141. doi:10.1209/0295-5075/12/2/008.
  • Lavrentovich OD. Hybrid aligned nematic films with horizontally degenerated boundary conditions and saddle-splay elastic term. Phys Scripta. 1991;1991(T39):394. doi:10.1088/0031-8949/1991/T39/064.
  • Jain SC, Rout DK. Electrooptic response of polymer dispersed liquid-crystal films. J Appl Phys. 1991;70(11). doi:10.1063/1.349828.
  • Yamaguchi R, Sato S. Memory effects of light transmission properties in Polymer-Dispersed-Liquid-Crystal (PDLC) films. Jpn J Appl Phys. 1991;30(4A):L616. doi:10.1143/JJAP.30.L616.
  • Serra F, Eaton SM, Cerbino R, et al. Nematic liquid crystals embedded in cubic microlattices: memory effects and bistable pixels. Adv Funct Mater. 2013;23(32):3990–3994. doi:10.1002/adfm.201203792.
  • Jazbinšek M, Drevenšek Olenik I, Zgonik M, et al. Characterization of holographic polymer dispersed liquid crystal transmission gratings. J Appl Phys. 2001;90(8):3831.
  • Jeong J, Kim MW. Confinement-induced transition of topological defects in smectic liquid crystals: from a point to a line and pearls. Phys Rev Lett. 2012;108:207802. doi:10.1103/PhysRevLett.108.207802.
  • Serra F, Buscaglia M, Bellini T. The emergence of memory in liquid crystals. Mater Today. 2011;14(10):488–494. doi:10.1016/S1369-7021(11)70213-9.
  • Kamien RD, Nelson DR, Santangelo CD, et al. Extrinsic curvature, geometric optics, and lamellar order on curved substrates. Phys Rev E. 2009;80:051703. doi:10.1103/PhysRevE.80.051703.
  • Lopez-Leon T, Fernandez-Nieves A, Nobili M, et al. Smectic shells. J Phys Condens Matter. 2012;24(28):284122.
  • Manyuhina OV, Bowick MJ. Thick smectic shells. Int J Non Linear Mech. 2015;75:87–91. doi:10.1016/j.ijnonlinmec.2015.04.003.
  • Beller DA, Gharbi MA, Honglawan A, et al. Focal conic flower textures at curved interfaces. Phys Rev X. 2013;3:041026.
  • Gharbi MA, Liu IB, Luo Y, et al. Smectic gardening on curved landscapes. Langmuir. 2015;31(40):11135–11142. doi:10.1021/acs.langmuir.5b02508.
  • Kim DS, Cha YJ, Kim MH, et al. Controlling Gaussian and mean curvatures at the microscale by sublimation and condensation of smectic liquid crystals. Nat Commun. 2016;7:10236. doi:10.1038/ncomms10236.
  • Seč D, Porenta T, Ravnik M, et al. Geometrical frustration of chiral ordering in cholesteric droplets. Soft Matter. 2012;8:11982–11988. doi:10.1039/c2sm27048j.
  • Fukuda JI, Žumer S. Novel defect structures in a strongly confined liquid-crystalline blue phase. Phys Rev Lett. 2010;104:017801. doi:10.1103/PhysRevLett.104.017801.
  • Martinez-Gonzalez JA, Zhou Y, Rahimi M, et al. Blue-phase liquid crystal droplets. Proc Natl Acad Sci. 2015;112(43):13195–13200. doi:10.1073/pnas.1514251112.
  • Borshch V, Kim YK, Xiang J, et al. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nat Commun. 2013;4:2635. doi:10.1038/ncomms3635.
  • Warner M, Terentjev EM. Liquid crystal elastomers. Oxford: Clarendon press; 2006.
  • Modes CD, Bhattacharya K, Warner M. Gaussian curvature from flat elastica sheets. Proc R Soc Lond Math Phys Sci. 2011;467(2128):1121–1140.
  • Modes CD, Warner M. Blueprinting nematic glass: systematically constructing and combining active points of curvature for emergent morphology. Phys Rev E. 2011;84:021711. doi:10.1103/PhysRevE.84.021711.
  • White TJ, Broer DJ. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater. 2015;14:1087–1098. doi:10.1038/nmat4433.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.