478
Views
14
CrossRef citations to date
0
Altmetric
Invited Article

Shape minimisation problems in liquid crystals

&
Pages 2352-2362 | Received 03 May 2016, Published online: 28 Jul 2016

References

  • Barbero G, Evangelista L. Adsorption phenomena and anchoring energy in nematic liquid crystals. New York: Taylor & Francis; 2006.
  • Rasing T, Musevic I. Surfaces and interfaces of liquid crystals. Heidelberg: Springer Berlin; 2013.
  • Kim JH, Yoneya M, Yokoyama H. Tristable nematic liquid-crystal device using micropatterned surface alignment. Nature. 2002;420:159–162. doi:10.1038/nature01163.
  • Atherton TJ, Adler JH. Competition of elasticity and flexoelectricity for bistable alignment of nematic liquid crystals on patterned substrates. Phys Rev E. 2012;86:040701. doi:10.1103/PhysRevE.86.040701.
  • Kondrat S, Poniewierski A, Harnau L. Nematic liquid crystal in contact with periodically patterned surfaces. Liq Cryst. 2005;32:95–105. doi:10.1080/02678290512331324039.
  • Anquetil-Deck C, Cleaver DJ, Bramble JP, et al. Independent control of polar and azimuthal anchoring. Phys Rev E. 2013;88:012501. doi:10.1103/PhysRevE.88.012501.
  • Lagerwall JP, Scalia G. A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio-and microtechnology. Curr Appl Phys. 2012;12:1387–1412. doi:10.1016/j.cap.2012.03.019.
  • MacKintosh FC, Lubensky TC. Orientational order, topology, and vesicle shapes. Phys Rev Lett. 1991;67:1169–1172. doi:10.1103/PhysRevLett.67.1169.
  • Fernández-Nieves A, Vitelli V, Utada AS, et al. Novel defect structures in nematic liquid crystal shells. Phys Rev Lett. 2007;99:157801. doi:10.1103/PhysRevLett.99.157801.
  • Whitmer JK, Wang X, Mondiot F, et al. Nematic-field-driven positioning of particles in liquid crystal droplets. Phys Rev Lett. 2013;111:227801. doi:10.1103/PhysRevLett.111.227801.
  • Zocher VH. Über freiwillige Strukturbildung in Solen. (Eine neue Art anisotrop flüssiger Medien.). Zeitschrift Für Anorg Und Allg Chemie. 1925;147:91–110. doi:10.1002/zaac.19251470111.
  • Zocher VH, Jacobsohn K. Über Taktosole. Kolloid Beih. 1929;28:167–206. doi:10.1007/BF02556733.
  • Bernal JD, Fankuchen I. X-ray and crystallographic studies of plant virus preparations. J Gen Physiol. 1941;25:111–165. doi:10.1085/jgp.25.1.111.
  • Sonin AS. Inorganic lyotropic liquid crystals. J Mater Chem. 1998;8:2557–2574. doi:10.1039/a802666a.
  • Tang JX, Kang H, Jia J. Intriguing self-assembly of large granules of f-actin facilitated by gelsolin and α-actinin. Langmuir. 2005;21:2789–2795. doi:10.1021/la047213c.
  • Casagrande C, Fabre P, Guedeau MA, et al. Observation of anisotropic droplets in nematic-nematic phase separation. Europhys Lett. 1987;3:73–78. doi:10.1209/0295-5075/3/1/012.
  • Kim YK, Shiyanovskii SV, Lavrentovich OD. Morphogenesis of defects and tactoids during isotropic-nematic phase transition in self-assembled lyotropic chromonic liquid crystals. J Phys Condens Matter. 2013;25:404202. doi:10.1088/0953-8984/25/40/404202.
  • Verhoeff AA, Bakelaar IA, Otten RHJ, et al. Tactoids of plate-like particles: size, shape, and director field. Langmuir. 2011;27:116–125. doi:10.1021/la104128m.
  • Peng C, Lavrentovich OD. Chirality amplification and detection by tactoids of lyotropic chromonic liquid crystals. Soft Matter. 2015;11:7257–7263. doi:10.1039/C5SM01632K.
  • Mushenheim PC, Trivedi RR, Weibel DB, et al. Using liquid crystals to reveal how mechanical anisotropy changes interfacial behaviors of motile bacteria. Biophys J. 2014;107:255–265. doi:10.1016/j.bpj.2014.04.047.
  • Zhou S, Sokolov A, Lavrentovich OD, et al. Living liquid crystals. Proc Natl Acad Sci U S A. 2014;111:1265–1270. doi:10.1073/pnas.1321926111.
  • Dogic Z, Fraden S. Development of model colloidal liquid crystals and the kinetics of the isotropic-smectic transition. Philos T R Soc A. 2001;359:997–1015. doi:10.1098/rsta.2000.0814.
  • Jamali V, Behabtu N, Senyuk B, et al. Experimental realization of crossover in shape and director field of nematic tactoids. Phys Rev E. 2015;91:042507. doi:10.1103/PhysRevE.91.042507.
  • Chandrasekhar S. Surface tension of liquid crystals. Mol Cryst Liq Cryst. 1966;2:71–80. doi:10.1080/15421406608083061.
  • Kaznacheev AV, Bogdanov MM, Sonin AS. The influence of anchoring energy on the prolate shape of tactoids in lyotropic inorganic liquid crystals. J Exp Theor Phys. 2003;97:1159–1167. doi:10.1134/1.1641899.
  • Kaznacheev AV, Bogdanov MM, Taraskin SA. The nature of prolate shape of tactoids in lyotropic inorganic liquid crystals. J Exp Theor Phys. 2002;95:57–63. doi:10.1134/1.1499901.
  • Prinsen P, van der Schoot P. Shape and director-field transformation of tactoids. Phys Rev E. 2003;68:021701. doi:10.1103/PhysRevE.68.021701.
  • Prinsen P, Van Der Schoot P. Continuous director-field transformation of nematic tactoids. Eur Phys J E. 2004;13:35–41. doi:10.1140/epje/e2004-00038-y.
  • Bates MA. Computer simulation studies of nematic liquid crystal tactoids. Chem Phys Lett. 2003;368:87–93. doi:10.1016/S0009-2614(02)01824-9.
  • Vanzo D, Ricci M, Berardi R, et al. Shape, chirality and internal order of freely suspended nematic nanodroplets. Soft Matter. 2012;8:11790. doi:10.1039/c2sm27114a.
  • Warner M, Terentjev E. Liquid crystal elastomers. Oxford: Science Publications; 2003.
  • De Gennes PG. Réflexions sur un type de polymères nématiques. C R Acad Sci B. 1975;281:101–103.
  • Kundler I, Finkelmann H. Strain-induced director reorientation in nematic liquid single crystal elastomers. Macromol Rapid Commun. 1995;16:679–686. doi:10.1002/marc.1995.030160908.
  • Finkelmann H, Nishikawa E, Pereira G, et al. A new opto-mechanical effect in solids. Phys Rev Lett. 2001;87:015501. doi:10.1103/PhysRevLett.87.015501.
  • Conti S, DeSimone A, Dolzmann G. Semisoft elasticity and director reorientation in stretched sheets of nematic elastomers. Phys Rev E. 2002;66:061710. doi:10.1103/PhysRevE.66.061710.
  • Mbanga BL, Ye F, Selinger JV, et al. Modeling elastic instabilities in nematic elastomers. Phys Rev E. 2010;82:051701. doi:10.1103/PhysRevE.82.051701.
  • Chang CC, Chien LC, Meyer R. Electro-optical study of nematic elastomer gels. Phys Rev E. 1997;56:595–599. doi:10.1103/PhysRevE.56.595.
  • Burridge D, Mao Y, Warner M. Mechanical strains and electric fields applied to topologically imprinted elastomers. Phys Rev E. 2006;74:021708. doi:10.1103/PhysRevE.74.021708.
  • Menzel A, Brand H. Cholesteric elastomers in external mechanical and electric fields. Phys Rev E. 2007;75:011707. doi:10.1103/PhysRevE.75.011707.
  • Ye F, Mukhopadhyay R, Stenull O, et al. Semisoft nematic elastomers and nematics in crossed electric and magnetic fields. Phys Rev Lett. 2007;98:147801. doi:10.1103/PhysRevLett.98.147801.
  • Urayama K, Okuno Y, Kohjiya S. Volume transition of liquid crystalline gels in isotropic solvents. Macromolecules. 2003;36:6229–6234. doi:10.1021/ma034574a.
  • Urayama K, Mashita R, Arai YO, et al. Swelling and shrinking dynamics of nematic elastomers having global director orientation. Macromolecules. 2006;39:8511–8516. doi:10.1021/ma061507i.
  • Yu Y, Nakano M, Ikeda T. Photomechanics: directed bending of a polymer film by light. Nature. 2003;425:145. doi:10.1038/425145a.
  • Li MH, Keller P, Li B, et al. Light-driven side-on nematic elastomer actuators. Adv Mater. 2003;15:569–572. doi:10.1002/adma.200304552.
  • Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, et al. Fast liquid-crystal elastomer swims into the dark. Nat Mater. 2004;3:307–310. doi:10.1038/nmat1118.
  • He L. Surface deformation of nematic elastomers under striped illumination. Phys Rev E. 2007;75:041702. doi:10.1103/PhysRevE.75.041702.
  • Sawa Y, Urayama K, Takigawa T, et al. Thermally driven giant bending of liquid crystal elastomer films with hybrid alignment. Macromolecules. 2010;43:4362–4369. doi:10.1021/ma1003979.
  • Mahimwalla Z, Yager K, Mamiya J, et al. Azobenzene photomechanics: prospects and potential applications. Polymer Bulletin. 2012;69:967–1006. doi:10.1007/s00289-012-0792-0.
  • Warner M, Terentjev E. Thermal and photo-actuation in nematic elastomers. Macromol Symp. 2003;200:81–92. doi:10.1002/masy.200351008.
  • Palffy-Muhoray P. Liquid crystals: printed actuators in a flap. Nat Mater. 2009;8:614–615. doi:10.1038/nmat2502.
  • Xie P, Zhang R. Liquid crystal elastomers, networks and gels: advanced smart materials. J Mater Chem. 2005;15:2529–2550. doi:10.1039/B413835J.
  • de Haan LT, Gimenez-Pinto V, Konya A, et al. Accordion-like actuators of multiple 3d patterned liquid crystal polymer films. Adv Funct Mater. 2014;24:1251–1258. doi:10.1002/adfm.201302568.
  • Brakke KA. The surface evolver. Exp Math. 1992;1:141–165. doi:10.1080/10586458.1992.10504253.
  • Lishchuk SV, Care CM. Shape of an isotropic droplet in a nematic liquid crystal: the role of surfactant. Phys Rev E. 2004;70:1–6. doi:10.1103/PhysRevE.70.011702.
  • Tortora L, Lavrentovich OD. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals. Proc Natl Acad Sci U S A. 2011;108:5163–5168. doi:10.1073/pnas.1100087108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.