421
Views
26
CrossRef citations to date
0
Altmetric
Invited Article

Structure-electronics relations of discotic liquid crystals from a molecular modelling perspective

, , , &
Pages 2092-2113 | Received 02 May 2016, Accepted 03 Jul 2016, Published online: 27 Jul 2016

References

  • Laschat S, Baro A, Steinke N, et al. Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angewandte Chemie. 2007;46:4832–4887. doi:10.1002/anie.200604203.
  • Wohrle T, Wurzbach I, Kirres J, et al. Discotic liquid crystals. Chem Rev. 2016;116:1139–1241. doi:10.1021/acs.chemrev.5b00190.
  • Boden N, Bushby RJ, Clements J, et al. Device applications of charge transport in discotic liquid crystals. J Mater Chem. 1999;9:2081–2086. doi:10.1039/a903005k.
  • Hägele C, Wuckert E, Laschat S, et al. Anomalous odd–even effects in columnar and smectic phases of discotic tetraphenylenes. ChemPhysChem. 2009;10:1291–1298. doi:10.1002/cphc.v10:8.
  • Asahina S, Sorai M. Thermodynamic properties of discotic mesogens: heat capacities and phase transitions of benzene-hexa-n-alkanoates. J Chem Thermodyn. 2003;35:649–666. doi:10.1016/S0021-9614(02)00243-4.
  • Müller S, Müllen K. Expanding benzene to giant graphenes: towards molecular devices. Philosophical Trans Royal Soc London A Mathematical Phys Eng Sci. 2007;365:1453–1472. doi:10.1098/rsta.2007.2026.
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36:1902–1929. doi:10.1039/b417320c.
  • Malthête J, Jacques J, Tinh NH, et al. Macroscopic evidence of molecular chirality in columnar mesophases. Nature. 1982;298:46–48. doi:10.1038/298046a0.
  • Fontes E, Heiney PA, de Jeu WH. Liquid-crystalline and helical order in a discotic mesophase. Phys Rev Lett. 1988;61:1202–1205. doi:10.1103/PhysRevLett.61.1202.
  • Park JH, Kim KH, Park YW, et al. Ultralong ordered nanowires from the concerted self-assembly of discotic liquid crystal and solvent molecules. Langmuir. 2015;31:9432–9440. doi:10.1021/acs.langmuir.5b01332.
  • Arikainen EO, Boden N, Bushby RJ, et al. Effects of side-chain length on the charge transport properties of discotic liquid crystals and their implications for the transport mechanism. J Mater Chem. 1995;5:2161–2165. doi:10.1039/jm9950502161.
  • Tong Y, Tang Q, Lemke HT, et al. Solution-based fabrication of single-crystalline arrays of organic nanowires. Langmuir. 2010;26:1130–1136. doi:10.1021/la902223k.
  • Kastler M, Pisula W, Wasserfallen D, et al. Influence of alkyl substituents on the solution- and surface-organization of hexa-peri-hexabenzocoronenes. J Am Chem Soc. 2005;127:4286–4296. doi:10.1021/ja0430696.
  • Boden N, Bushby RJ, Clements J, et al. Charge dynamics and recombination kinetics in columnar discotic liquid crystals. Phys Rev B. 1998;58:3063–3074. doi:10.1103/PhysRevB.58.3063.
  • Boden N, Bushby RJ, Clements J, et al. Mechanism of charge transport in discotic liquid crystals. Phys Rev B. 1995;52:13274–13280. doi:10.1103/PhysRevB.52.13274.
  • Milgrom LR, Yahioglu G, Bruce DW, et al. Mesogenic Zinc(u) complexes of 5,10,15,20- tetraarylethynyl-substituted porphyrins. Adv Mater. 1997;9:313–316. doi:10.1002/(ISSN)1521-4095.
  • Segura JL, Juarez R, Ramos M, et al. Hexaazatriphenylene (HAT) derivatives: from synthesis to molecular design, self-organization and device applications. Chem Soc Rev. 2015;44:6850–6885. doi:10.1039/C5CS00181A.
  • Abdullah N, Noor NLM, Nordin AR, et al. Spin-crossover, mesomorphic and thermoelectrical properties of cobalt(ii) complexes with alkylated N3-Schiff bases. J Mater Chem C. 2015;3:2491–2499. doi:10.1039/C4TC02923B.
  • Abdullah N, Hashim R, Ozair LN, et al. Structural, mesomorphic, photoluminescence and thermoelectric studies of mononuclear and polymeric complexes of copper(ii) with 2-hexyldecanoato and 4,4′-bipyridine ligands. J Mater Chem C. 2015;3:11036–11045. doi:10.1039/C5TC02273H.
  • Abdullah N, Arifin Z, Tiekink ERT, et al. Covalent and ionic Cu(II) complexes with cyclam and substituted benzoato ligands: structural, thermal, redox and mesomorphic properties. J Coord Chem. 2016;69:862–878. doi:10.1080/00958972.2016.1147032.
  • Abdullah N, Halid YY, Ti T J, et al. Crystal structures and mesomorphic properties of Schiff base homologs and derivatives, and magnetic properties of their dimeric and dinuclear copper(II) complexes. Mol Cryst Liq Cryst. 2016;624:132–143. doi:10.1080/15421406.2015.1044695.
  • Abdullah N, Azil A, Marlina A, et al. Magnetic, photophysical and thermal properties of complexes of iron (II) with structurally different schiff bases. Asian J Chem. 2015;27:2359–2364. doi:10.14233/ajchem.2015.17829.
  • Haverkate LA, Zbiri M, Johnson MR, et al. Conformation, defects, and dynamics of a discotic liquid crystal and their influence on charge transport. J Phys Chem B. 2011;115:13809–13816. doi:10.1021/jp2068478.
  • Warman JM, Van De Craats AM. Charge mobility in discotic materials studied by Pr-Trmc. Mol Cryst Liq Cryst. 2003;396:41–72. doi:10.1080/15421400390213186.
  • Vaughan G, Heiney P, McCauley J Jr, et al. Conductivity and structure of a liquid-crystalline organic conductor. Phys Rev B. 1992;46:2787–2791. doi:10.1103/PhysRevB.46.2787.
  • Kumar S. Recent developments in the chemistry of triphenylene-based discotic liquid crystals. Liq Cryst. 2004;31:1037–1059. doi:10.1080/02678290410001724746.
  • Kumar S. Self-organization of disc-like molecules: chemical aspects. Chem Soc Rev. 2006;35:83–109. doi:10.1039/B506619K.
  • Cammidge AN, Obi G, Turner RJ, et al. The synthesis of unsymmetrically substituted triphenylenes through controlled construction of the core and subsequent aromatic substitution reactions – a perspective and update. Liq Cryst. 2015;1–7. doi:10.1080/02678292.2014.992054.
  • Kayal H, Ahmida MM, Dufour S, et al. Cross-linking of discotic tetraazaporphyrin dyes in 2 and 3 dimensions by “click” chemistry. J Mater Chem C. 2013;1:7064–7072. doi:10.1039/c3tc31588f.
  • Benning S, Kitzerow H-S, Bock H, et al. Fluorescent columnar liquid crystalline 3, 4, 9, 10-tetra-(n-alkoxycarbonyl)-perylenes. Liq Cryst. 2000;27:901–906. doi:10.1080/02678290050043842.
  • Eichhorn SH, Paraskos AJ, Kishikawa K, et al. The interplay of bent-shape, lateral dipole and chirality in thiophene based di-, tri-, and tetracatenar liquid crystals. J Am Chem Soc. 2002;124:12742–12751. doi:10.1021/ja0268027.
  • Alameddine B, Aebischer OF, Amrein W, et al. Mesomorphic hexabenzocoronenes bearing perfluorinated chains. Chem Materials. 2005;17:4798–4807. doi:10.1021/cm050612o.
  • Craats AMvd, Warman JM, Fechtenkötter A, et al. Record charge carrier mobility in a room-temperature discotic liquid-crystalline derivative of hexabenzocoronene. Adv Mater. 1999;11:1469–1472. doi:10.1002/(SICI)1521-4095(199912)11:17<1469::AID-ADMA1469>3.0.CO;2-K.
  • Mohr B, Wegner G, Ohta K. Synthesis of triphenylene-based porphyrazinato metal(II) complexes which display discotic columnar mesomorphism. J Chem Society Chem Commun. 1995;995–996. doi:10.1039/c39950000995.
  • Foster EJ, Jones RB, Lavigueur C, et al. Structural factors controlling the self-assembly of columnar liquid crystals. J Am Chem Soc. 2006;128:8569–8574. doi:10.1021/ja0613198.
  • Kumar S, Wachtel EJ, Keinan E. Hexaalkoxytricycloquinazolines: new discotic liquid crystals. J Org Chem. 1993;58:3821–3827. doi:10.1021/jo00067a013.
  • Kumar S. Nanoparticles in the supramolecular order of discotic liquid crystals. Liq Cryst. 2013;41:353–367. doi:10.1080/02678292.2013.824122.
  • Takezoe H, Araoka F. Polar columnar liquid crystals. Liq Cryst. 2013;41:393–401. doi:10.1080/02678292.2013.834079.
  • Adam D, Schuhmacher P, Simmerer J, et al. Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature. 1994;371:141–143. doi:10.1038/371141a0.
  • Haverkate LA, Zbiri M, Johnson MR, et al. Correction to “Conformation, Defects, and Dynamics of a Discotic Liquid Crystal and Their Influence on Charge Transport”. J Phys Chem B. 2012;116:3908. doi:10.1021/jp3017562.
  • Ochse A, Kettner A, Kopitzke J, et al. Transient photoconduction in discotic liquid crystals. Phys Chem Chem Phys. 1999;1:1757–1760. doi:10.1039/a808615j.
  • Liu XY, Usui T, Hanna J. Self-directed orientation of molecular columns based on n-type hexaazatrinaphthylenes (HATNAs) for electron transport. Chemistry. 2014;20:14207–14212. doi:10.1002/chem.201403472.
  • Boden N, Bushby R, Clements J. Electron transport along molecular stacks in discotic liquid crystals. J Mater Science Mater Electronics. 1994;5:83–88.
  • Kumar S. Discotic liquid crystal-nanoparticle hybrid systems. NPG Asia Materials. 2014;6:e82. doi:10.1038/am.2013.75.
  • Ramamoorthy A. Thermotropic liquid crystals: recent advances. Netherlands: Springer; 2007.
  • Baker AD, Betteridge D. Photoelectron spectroscopy: chemical and analytical aspects. Oxford: Pergamon Press; 1972.
  • Ueno N, Kera S. Electron spectroscopy of functional organic thin films: deep insights into valence electronic structure in relation to charge transport property. Prog Surf Sci. 2008;83:490–557. doi:10.1016/j.progsurf.2008.10.002.
  • Kaafarani BR. Discotic liquid crystals for opto-electronic applications†‡. Chem Mater. 2011;23:378–396. doi:10.1021/cm102117c.
  • Seguy I, Jolinat P, Destruel P, et al. Red organic light emitting device made from triphenylene hexaester and perylene tetraester. J Appl Phys. 2001;89:5442–5448. doi:10.1063/1.1365059.
  • Schmidtke JP, Friend RH, Kastler M, et al. Control of morphology in efficient photovoltaic diodes from discotic liquid crystals. J Chem Phys. 2006;124:174704. doi:10.1063/1.2194536.
  • Pisula W, Menon A, Stepputat M, et al. A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-hexabenzocoronene. Adv Mater. 2005;17:684–689. doi:10.1002/adma.200401171.
  • Gearba RI, Anokhin DV, Bondar AI, et al. Homeotropic alignment of columnar liquid crystals in open films by means of surface nanopatterning. Adv Mater. 2007;19:815–820. doi:10.1002/(ISSN)1521-4095.
  • Reichert T, Saragi TPI, Salbeck J. Magnetoresistive field-effect transistors based on organic donor-acceptor blends. Rsc Adv. 2012;2:7388–7390. doi:10.1039/c2ra20901b.
  • Sun -S-S, Dalton LR. Introduction to organic electronic and optoelectronic materials and devices. 2nd ed. Boca Raton (FL): CRC Press/Taylor & Francis Group; 2016.
  • Chandrasekhar S, Balagurusamy V. Discotic liquid crystals as quasi–one–dimensional electrical conductors. Proc R Soc Lond A. 2002;458:1783–1794. doi:10.1098/rspa.2001.0935.
  • Said SM, Nordin AR, Abdullah N, et al. Thermoelectricity in liquid crystals. Proc SPIE, Liquid Crystals XIX. 2015 Sep 5;9565:95650J. doi:10.1117/12.2188137.
  • Bubnova O, Crispin X. Towards polymer-based organic thermoelectric generators. Energy Environ Sci. 2012;5:9345. doi:10.1039/c2ee22777k.
  • Miyajima D, Araoka F, Takezoe H, et al. Ferroelectric columnar liquid crystal featuring confined polar groups within core–shell architecture. Science. 2012;336:209–213. doi:10.1126/science.1217954.
  • Tsuji Y, Yoshizawa K. Current rectification through π–π stacking in multilayered donor–acceptor cyclophanes. J Phys Chem C. 2012;116:26625–26635. doi:10.1021/jp308849t.
  • Stokbro K, Taylor J, Brandbyge M. Do aviram−ratner diodes rectify? J Am Chem Soc. 2003;125:3674–3675. doi:10.1021/ja028229x.
  • Lemaur V, da Silva Filho DA, Coropceanu V, et al. Charge transport properties in discotic liquid crystals: a quantum-chemical insight into structure−property relationships. J Am Chem Soc. 2004;126:3271–3279. doi:10.1021/ja0390956.
  • Care CM, Cleaver DJ. Computer simulation of liquid crystals. Rep Prog Phys. 2005;68:2665–2700. doi:10.1088/0034-4885/68/11/R04.
  • Caprion D, Bellier-Castella L, Ryckaert JP. Influence of shape and energy anisotropies on the phase diagram of discotic molecules. Phys Rev E Stat Nonlin Soft Matter Phys. 2003;67:041703. doi:10.1103/PhysRevE.67.041703.
  • Ono I, Kondo S. A computational approach to the structure and motion of hexakis (pentyloxy) triphenylene (THE5) in discotic mesophase. Bull Chem Soc Jpn. 1992;65:1057–1061. doi:10.1246/bcsj.65.1057.
  • Zbiri M, Johnson MR, Kearley GJ, et al. Density functional calculations of potential energy surface and charge transfer integrals in molecular triphenylene derivative HAT6. Theor Chem Acc. 2009;125:445–451. doi:10.1007/s00214-009-0559-3.
  • Abdullah N, Mohd Said S, Marlina A, et al. Photophysical and electrochemical studies of multinuclear complexes of iron(II) with acetate and extended conjugated N-donor ligands. ScientificWorldJournal. 2015;2015:860537. doi:10.1155/2015/860537.
  • Mulder FM, Stride J, Picken SJ, et al. Dynamics of a triphenylene discotic molecule, HAT6, in the columnar and isotropic liquid phases. J Am Chem Soc. 2003;125:3860–3866. doi:10.1021/ja029227f.
  • Cheng YC, Silbey RJ, da Silva Filho DA, et al. Three-dimensional band structure and bandlike mobility in oligoacene single crystals: A theoretical investigation. J Chem Phys. 2003;118:3764–3774. doi:10.1063/1.1539090.
  • Palenberg MA, Silbey RJ, Malagoli M, et al. Almost temperature independent charge carrier mobilities in liquid crystals. J Chem Phys. 2000;112:1541. doi:10.1063/1.480700.
  • Cinacchi G, Colle R, Tani A. Atomistic molecular dynamics simulation of hexakis(pentyloxy)triphenylene: structure and translational dynamics of its columnar state. J Phys Chem B. 2004;108:7969–7977. doi:10.1021/jp049654a.
  • Chakrabarti D, Bagchi B. Energy landscape view of phase transitions and slow dynamics in thermotropic liquid crystals. Proc Natl Acad Sci. 2006;103:7217–7221. doi:10.1073/pnas.0508355103.
  • Chakrabarti D, Wales DJ. Energy landscape of a model discotic liquid crystal. Phys Rev E Stat Nonlin Soft Matter Phys. 2008;77:051709. doi:10.1103/PhysRevE.77.051709.
  • Senthilkumar K, Grozema FC, Bickelhaupt FM, et al. Charge transport in columnar stacked triphenylenes: effects of conformational fluctuations on charge transfer integrals and site energies. J Chem Phys. 2003;119:9809. doi:10.1063/1.1615476.
  • Wegewijs BR, Siebbeles LDA, Boden N, et al. Charge-carrier mobilities in binary mixtures of discotic triphenylene derivatives as a function of temperature. Phys Rev B. 2002;65:245112. doi:10.1103/PhysRevB.65.245112.
  • Olivier Y, Muccioli L, Lemaur V, et al. Theoretical characterization of the structural and hole transport dynamics in liquid-crystalline phthalocyanine stacks. J Phys Chem B. 2009;113:14102–14111. doi:10.1021/jp9061169.
  • Lever LJ, Kelsall RW, Bushby RJ. Band transport model for discotic liquid crystals. Phys Rev B. 2005;72:035130. doi:10.1103/PhysRevB.72.035130.
  • Bässler H. Charge transport in disordered organic photoconductors a monte carlo simulation study. Physica Status Solidi (B). 1993;175:15–56. doi:10.1002/(ISSN)1521-3951.
  • Hatsusaka K, Ohta K, Yamamoto I, et al. Discotic liquid crystals of transition metal complexes, part 30: spontaneous uniform homeotropic alignment of octakis(dialkoxyphenoxy)phthalocyaninatocopper() complexes. J Mater Chem. 2001;11:423–433. doi:10.1039/b004406g.
  • Norton JE, Brédas J-L. Theoretical characterization of titanyl phthalocyanine as a p-type organic semiconductor: short intermolecular π‐π interactions yield large electronic couplings and hole transport bandwidths. J Chem Phys. 2008;128:034701. doi:10.1063/1.2806803.
  • Coropceanu V, Cornil J, da Silva Filho DA, et al. Charge transport in organic semiconductors. Chem Rev. 2007;107:926–952. doi:10.1021/cr050140x.
  • Dimitrakopoulos CD, Mascaro DJ. Organic thin-film transistors: A review of recent advances. IBM J Res Dev. 2001;45:11–27. doi:10.1147/rd.451.0011.
  • Troisi A, Orlandi G. Dynamics of the intermolecular transfer integral in crystalline organic semiconductors. J Phys Chem. 2006;110:4065–4070. doi:10.1021/jp055432g.
  • Cornil J, Lemaur V, Calbert JP, et al. Charge transport in discotic liquid crystals: a molecular scale description. Adv Mater. 2002;14:726–729. doi:10.1002/1521-4095(20020517)14:10<726::AID-ADMA726>3.0.CO;2-D.
  • Bag S, Maingi V, Maiti PK, et al. Molecular structure of the discotic liquid crystalline phase of hexa-peri-hexabenzocoronene/oligothiophene hybrid and their charge transport properties. J Chem Phys. 2015;143:144505. doi:10.1063/1.4932373.
  • Barlow S, Zhang Q, Kaafarani BR, et al. Synthesis, ionisation potentials and electron affinities of hexaazatrinaphthylene derivatives. Chemistry. 2007;13:3537–3547. doi:10.1002/chem.200601298.
  • Crispin X, Cornil J, Friedlein R, et al. Electronic delocalization in discotic liquid crystals: a joint experimental and theoretical study. J Am Chem Soc. 2004;126:11889–11899. doi:10.1021/ja048669j.
  • Zerner MC, Loew GH, Kirchner RF, et al. An intermediate neglect of differential overlap technique for spectroscopy of transition-metal complexes. Ferrocene. J Am Chem Society. 1980;102:589–599. doi:10.1021/ja00522a025.
  • Zbiri M, Johnson MR, Haverkate L, et al. Molecular modelling of ground- and excited-states vibrations in organic conducting devices: hexakis(n-hexyloxy)triphenylene (HAT6) as case study. Aust J Chem. 2010;63:388–395. doi:10.1071/CH09459.
  • Delley B. An all-electron numerical-method for solving the local density functional for polyatomic-molecules. J Chem Phys. 1990;92:508–517. doi:10.1063/1.458452.
  • Delley B. From molecules to solids with the DMol(3) approach. J Chem Phys. 2000;113:7756–7764. doi:10.1063/1.1316015.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi:10.1103/PhysRevLett.77.3865.
  • Perdew JP, Constantin LA, Sagvolden E, et al. Relevance of the slowly varying electron gas to atoms, molecules, and solids. Phys Rev Lett. 2006;97:223002. doi:10.1103/PhysRevLett.97.223002.
  • Delley B. Ground-state enthalpies: evaluation of electronic structure approaches with emphasis on the density functional method. J Phys Chem. 2006;110:13632–13639. doi:10.1021/jp0653611.
  • Delley B. Hardness conserving semilocal pseudopotentials. Phys Rev B 2002;66. doi:10.1103/PhysRevB.66.155125.
  • Haverkate LA, Zbiri M, Johnson MR, et al. On the morphology of a discotic liquid crystalline charge transfer complex. J Phys Chem B. 2012;116:13098–13105. doi:10.1021/jp306412u.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.