3,628
Views
75
CrossRef citations to date
0
Altmetric
Invited Article

Non-electronic gas sensors from electrospun mats of liquid crystal core fibres for detecting volatile organic compounds at room temperature

, &
Pages 1986-2001 | Received 22 May 2016, Published online: 28 Jul 2016

References

  • Kohl D. Function and applications of gas sensors. J Phys D Appl Phys. 2001;34(19):R125–R149. doi:10.1088/0022-3727/34/19/201.
  • Liu X, Cheng S, Liu H, et al. A survey on gas sensing technology. Sensors. 2012;12(12):9635–9665. doi:10.3390/s120709635.
  • Moseley PT. Solid state gas sensors. Meas Sci Technol. 1997;8(3):223–237. doi:10.1088/0957-0233/8/3/003.
  • Yamazoe N. Toward innovations of gas sensor technology. Sens Actuators B. 2005;108(1–2):2–14. doi:10.1016/j.snb.2004.12.075.
  • Bakhoum EG, Cheng MHM. Miniature carbon monoxide detector based on nanotechnology. IEEE Trans Instrum Meas. 2013;62(1):240–245. doi:10.1109/TIM.2012.2212507.
  • McDonald EM, Gielen AC, Shields WC, et al. Residential carbon monoxide (CO) poisoning risks: correlates of observed CO alarm use in urban households. J Environ Health. 2013;76(3):26–32.
  • Billi E, Viricelle JP, Montanaro L, et al. Development of a protected gas sensor for exhaust automotive applications. IEEE Sens J. 2002;2(4):342–348. doi:10.1109/JSEN.2002.804530.
  • Riegel J. Exhaust gas sensors for automotive emission control. Solid State Ionics. 2002;152-153:783–800. doi:10.1016/S0167-2738(02)00329-6.
  • Diehl KL, Anslyn EV. Array sensing using optical methods for detection of chemical and biological hazards. Chem Soc Rev. 2013;42(22):8596. doi:10.1039/c3cs60136f.
  • Yoo R, Kim J, Song MJ, et al. Nano-composite sensors composed of single-walled carbon nanotubes and polyaniline for the detection of a nerve agent simulant gas. Sens Actuators B. 2015;209:444–448. doi:10.1016/j.snb.2014.11.137.
  • Kim DK, Hwang M, Lagerwall JPF. Liquid crystal-functionalization of electrospun polymer fibers. J Polym Sci B Polym Phys. 2013;51(11):855–867. doi:10.1002/polb.23285.
  • Smulko JM, Trawka M, Granqvist CG, et al. New approaches for improving selectivity and sensitivity of resistive gas sensors: a review. Sensor Rev. 2015;35(4):340–347. doi:10.1108/SR-12-2014-0747.
  • Yu JB, Byun HG, So MS, et al. Analysis of diabetic patient’s breath with conducting polymer sensor array. Sens Actuators B. 2005;108(1–2):305–308. doi:10.1016/j.snb.2005.01.040.
  • Kim J, Lee M, Shim HJ, et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun. 2014;5:5747. doi:10.1038/ncomms6747.
  • Borini S, White R, Wei D, et al. Ultrafast graphene oxide humidity sensors. ACS Nano. 2013;7(12):11166–11173. doi:10.1021/nn404889b.
  • Ramgir N, Datta N, Kaur M, et al. Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects. Colloid Surf A. 2013;439:101–116. doi:10.1016/j.colsurfa.2013.02.029.
  • Drean E, Schacher L, Bauer F, et al. A smart sensor for induced stress measurement in automotive textiles. J Text I. 2007;98(6):523–531. doi:10.1080/00405000701502404.
  • Franke M, Simon U, Moos R, et al. Development and working principle of an ammonia gas sensor based on a refined model for solvate supported proton transport in zeolites. Phys Chem Chem Phys. 2003;5(23):5195–5198. doi:10.1039/B307502H.
  • Han Y, Pacheco K, Bastiaansen CWM, et al. Optical monitoring of gases with cholesteric liquid crystals. J Am Chem Soc. 2010;132(9):2961–2967. doi:10.1021/ja907826z.
  • Wang L, Chen W, Xu D, et al. Simple, rapid, sensitive, and versatile SWNT-paper sensor for environmental toxin detection competitive with ELISA. Nano Lett. 2009;9(12):4147–4152. doi:10.1021/nl902368r.
  • Bandodkar A, Molinnus D, Mirza O, et al. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens Bioelectron. 2014;54:603–609. doi:10.1016/j.bios.2013.11.039.
  • Bergmann J, McGregor A. Body-worn sensor design: what do patients and clinicians want. Ann Biomed Eng. 2011;39(9):2299–2312. doi:10.1007/s10439-011-0339-9.
  • Bonato P. Wearable sensors and systems. from enabling technology to clinical applications. IEEE Eng Med Biol Mag. 2010;29(3):25–36. doi:10.1109/MEMB.2010.936554.
  • Chan M, Estève D, Fourniols J, et al. Smart wearable systems: current status and future challenges. Artif Intell Med. 2012;56(3):137–156. doi:10.1016/j.artmed.2012.09.003.
  • Shim B, Chen W, Doty C, et al. Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett. 2008;8(12):4151–4157. doi:10.1021/nl801495p.
  • Korotcenkov G. Handbook of gas sensor materials: properties, advantages and shortcomings - volume 1: conventional approaches gas sensor requirements. In: Potyrailo RA, editor. Handbook of gas sensor materials. Vol. 1. New York (NY): Springer-Verlag; 2013. p. 26–35.
  • Comini E, Faglia G, Sberveglieri G, et al. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett. 2002;81(10):1869. doi:10.1063/1.1504867.
  • Fine GF, Cavanagh LM, Afonja A, et al. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors. 2010;10(6):5469–5502. doi:10.3390/s100605469.
  • Yamazoe N. New approaches for improving semiconductor gas sensors. Sens Actuators B. 1991;5(1–4):7–19. doi:10.1016/0925-4005(91)80213-4.
  • Bochenkov VE, Sergeev GB. Metal oxide nano-structures and their applications sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. In: Umar A, Hahn YB, editors. Metal oxide nanostructures and their applications. Vol. 2(3). Valencia (CA): American Scientific Publishers; 2010. p. 31–52.
  • Pang C, Lee C, Suh K. Recent advances in flexible sensors for wearable and implantable devices. J Appl Polym Sci. 2013;130(3):1429–1441. doi:10.1002/app.v130.3.
  • Bedolla-Pantoja M, Abbott N. Surface-controlled orientational transitions in elastically strained films of liquid crystal that are triggered by vapors of toluene. ACS Appl Mater Interfaces. 2016;8:13114–13122. doi:10.1021/acsami.6b02139.
  • Jacob HT, Nicholas AL. Dynamics of the chemo-optical response of supported films of nematic liquid crystals. Sens Actuators B. 2013;183:71–80. doi:10.1016/j.snb.2013.03.094.
  • Hunter JT, Pal SK, Abbott NL. Adsorbate-induced ordering transitions of nematic liquid crystals on surfaces decorated with aluminum perchlorate salts. ACS Appl Mater Interfaces. 2010;2(7):1857–1865. doi:10.1021/am100165a.
  • Carlton RJ, Hunter JT, Miller DS, et al. Chemical and biological sensing using liquid crystals. Liq Cryst Rev. 2013;1(1):29–51. doi:10.1080/21680396.2013.769310.
  • Chang CK, Kuo HL, Tang KT, et al. Optical detection of organic vapors using cholesteric liquid crystals. Appl Phys Lett. 2011;99(7):073504. doi:10.1063/1.3627162.
  • Chen CH, Lin YC, Chang HH, et al. Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions. Anal Chem. 2015;87(8):4546–4551. doi:10.1021/acs.analchem.5b00675.
  • Giese M, De Witt JC, Shopsowitz KE, et al. Thermal switching of the reflection in chiral nematic mesoporous organosilica films infiltrated with liquid crystals. ACS Appl Mater Interf. 2013;5(15):6854–6859. doi:10.1021/am402266z.
  • Liu Y, Cheng D, Lin IH, et al. Microfluidic sensing devices employing in situ-formed liquid crystal thin film for detection of biochemical interactions. Lab Chip. 2012;12(19):3746–3753. doi:10.1039/c2lc40462a.
  • Wang D, Park SY, Kang IK. Liquid crystals: emerging materials for use in real-time detection applications. J Mater Chem C. 2015;3(35):9038–9047. doi:10.1039/C5TC01321F.
  • Wang PH, Yu JH, Zhao YB, et al. A novel liquid crystal-based sensor for the real-time identification of organophosphonate vapors. Sens Actuators B. 2011;160(1):929–935. doi:10.1016/j.snb.2011.09.005.
  • Dickert F, Haunschild A, Hofmann P. Cholesteric liquid-crystals for solvent vapor detection - elimination of cross-sensitivity by band shape-analysis and pattern-recognition. Fresenius J Anal Chem. 1994;350(10–11):577–581. doi:10.1007/BF00323506.
  • Cadwell KD, Lockwood NA, Nellis BA, et al. Detection of organophosphorous nerve agents using liquid crystals supported on chemically functionalized surfaces. Sens Actuators B. 2007;128(1):91–98. doi:10.1016/j.snb.2007.05.044.
  • Sridharamurthy S, Cadwell K, Abbott N, et al. A microstructure for the detection of vapor-phase analytes based on orientational transitions of liquid crystals. Smart Mater Struct. 2008;17(1):012001. doi:10.1088/0964-1726/17/01/012001.
  • Cheng D, Sridharamurthy SS, Hunter JT, et al. A sensing device using liquid crystal in a micropillar array supporting structure. J Microelectromech Syst. 2009;18(5):973–982. doi:10.1109/JMEMS.2009.2029977.
  • Herzer N, Guneysu H, Davies JD, et al. Printable optical sensors based on h-bonded supramolecular cholesteric liquid crystal networks. J Am Chem Soc. 2012;134(18):7608–7611. doi:10.1021/ja301845n.
  • Mujahid A, Stathopulos H, Lieberzeit A, et al. Solvent vapour detection with cholesteric liquid crystals-optical and mass-sensitive evaluation of the sensor mechanism. Sensors. 2010;10(5):4887–4897. doi:10.3390/s100504887.
  • Sutarlie L, Qin H, Yang KL. Polymer stabilized cholesteric liquid crystal arrays for detecting vaporous amines. Analyst. 2010;135(7):1691–1696. doi:10.1039/b926674g.
  • Lin J, Chen C, Chen L, et al. Morphological appearances and photo-controllable coloration of dye-doped cholesteric liquid crystal/polymer coaxial microfibers fabricated by coaxial electrospinning technique. Opt Express. 2016;24(3):3112–3126. doi:10.1364/OE.24.003112.
  • Wang J, Jákli A, West J. Airbrush formation of liquid crystal/polymer fibers. ChemPhysChem. 2015;16:1839–1841. doi:10.1002/cphc.v16.9.
  • Enz E, La Ferrara V, Scalia G. Confinement-sensitive optical response of cholesteric liquid crystals in electrospun fibers. ACS Nano. 2013;7(8):6627–6635. doi:10.1021/nn400066n.
  • Ebru BA, Margaret FW, John WL. Self-assembled, optically responsive nematic liquid crystal/polymer core-shell fibers: Formation and characterization. Polymer. 2010;51(21):4823–4830. doi:10.1016/j.polymer.2010.08.011.
  • Enz E, Lagerwall J. Electrospun microfibres with temperature sensitive iridescence from encapsulated cholesteric liquid crystal. J Mater Chem. 2010;20(33):6866–6872. doi:10.1039/c0jm01223h.
  • Lagerwall JPF, McCann JT, Formo E, et al. Coaxial electrospinning of microfibres with liquid crystal in the core. Chem Commun. 2008;42:5420–5422. doi:10.1039/b810450f.
  • Agarwal S, Greiner A, Wendorff JH. Electrospinning of manmade and biopolymer nanofibers - progress in techniques, materials, and applications. Adv Funct Mater. 2009;19(18):2863–2879. doi:10.1002/adfm.v19:18.
  • Reneker D, Yarin A. Electrospinning jets and polymer nanofibers. Polymer. 2008;49(10):2387–2425. doi:10.1016/j.polymer.2008.02.002.
  • Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16(14):1151–1170. doi:10.1002/(ISSN)1521-4095.
  • Scalia G, Enz E, Calò O, et al. Morphology and core continuity of liquid-crystal-functionalized, coaxially electrospun fiber mats tuned via the polymer sheath solution. Macromol Mater Eng. 2013;298(5):583–589. doi:10.1002/mame.201200361.
  • Enz E, Baumeister U, Lagerwall J. Coaxial electrospinning of liquid crystal-containing poly(vinyl pyrrolidone) microfibers. Beilstein J Org Chem. 2009;5(58). doi:10.3762/bjoc.5.58.
  • Casper C, Stephens J, Tassi N, et al. Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules. 2004;37(2):573–578. doi:10.1021/ma0351975.
  • Megelski S, Stephens J, Chase D, et al. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules. 2002;35(22):8456–8466. doi:10.1021/ma020444a.
  • Lu P, Xia Y. Maneuvering the internal porosity and surface morphology of electrospun polystyrene yarns by controlling the solvent and relative humidity. Langmuir. 2013;29(23):7070–7078. doi:10.1021/la400747y.
  • Nayani K, Chang R, Fu J, et al. Spontaneous emergence of chirality in achiral lyotropic chromonic liquid crystals confined to cylinders. Nat Commun. 2015;6:8067. doi:10.1038/ncomms9067.
  • Davidson Z, Kang L, Jeong J, et al. Chiral structures and defects of lyotropic chromonic liquid crystals induced by saddle-splay elasticity. Phys Rev E. 2015;91(5):050501. doi:10.1103/PhysRevE.91.050501.
  • De Vrieze S, Camp VT, Nelvig A, et al. The effect of temperature and humidity on electrospinning. J Mater Sci. 2009;44(5):1357–1362. doi:10.1007/s10853-008-3010-6.
  • Yao Y, Gu Z, Zhang J, et al. Fiber-oriented liquid crystal polarizers based on anisotropic electrospinning. Adv Mater. 2007;19(21):3707–3711. doi:10.1002/(ISSN)1521-4095.
  • Kim DK, Lagerwall JPF. Influence of wetting on morphology and core content in electrospun core-sheath fibers. ACS Appl Mater Interf. 2014;6(18):16441–16447. doi:10.1021/am504961k.
  • Drzaic P, Drzaic P. Putting liquid crystal droplets to work: a short history of polymer dispersed liquid crystals. Liq Cryst. 2006;33:1281–1296. doi:10.1080/02678290601140563.
  • Drzaic PS. Liquid crystal dispersions. Singapore: World Scientific; 1995.
  • Shin Y, Hohman M, Brenner M, et al. Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer. 2001;42(25):9955–9967. doi:10.1016/S0032-3861(01)00540-7.
  • Hohman M, Shin M, Rutledge G, et al. Electrospinning and electrically forced jets. i. stability theory. Phys Fluids. 2001;13(8):2201–2220. doi:10.1063/1.1383791.
  • Munir M, Suryamas A, Iskandar F, et al. Scaling law on particle-to-fiber formation during electrospinning. Polymer. 2009;50:4935–4943. doi:10.1016/j.polymer.2009.08.011.
  • Shenoy S, Bates W, Frisch H, et al. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer. 2005;46:3372–3384. doi:10.1016/j.polymer.2005.03.011.
  • Rubinstein M, Colby RH. Polymer physics (chemistry). Oxford: Oxford University Press; 2003.