1,499
Views
75
CrossRef citations to date
0
Altmetric
Invited Article

Applications of liquid crystals in biosensing and organic light-emitting devices: future aspects

, , , &
Pages 2009-2050 | Received 18 May 2016, Published online: 27 Jul 2016

References

  • Bremer M, Kirsch P, Klasen-Memmer M, et al. The TV in your pocket: development of liquid-crystal materials for the new millennium. Angew Chem Int Ed. 2013;52:8880–8896. doi:10.1002/anie.201300903.
  • Abdulhalim I. Non-display bio-optic applications of liquid crystals. Liq Cryst Today. 2011;20:44–60. doi:10.1080/1358314X.2011.563975.
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36:1902–1929. doi:10.1039/B417320C.
  • Bushby RJ, Kawata K. Liquid crystals that affected the world: discotic liquid crystals. Liq Cryst. 2011;38:1415–1426. doi:10.1080/02678292.2011.603262.
  • Laschat S, Baro A, Steinke N, et al. discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew Chem Int Ed. 2007;46:4832–4887. doi:10.1002/anie.200604203.
  • Woltman SJ, Jay GD, Crawford GP. Liquid-crystal materials find a new order in biomedical applications. Nat Mater. 2007;6:929–938. doi:10.1038/nmat2010.
  • Lowe AM, Abbott NL. Liquid crystalline materials for biological applications. Chem Mater. 2012;24:746−758. doi:10.1021/cm202632m.
  • Bai Y, Abbott NL. Recent advances in colloidal and interfacial phenomena involving liquid crystals. Langmuir. 2011;27:5719–5738. doi:10.1021/la103301d.
  • Fan X, White IM, Shopova SI, et al. Sensitive optical biosensors for unlabeled targets: A review. Anal Chim Acta. 2008;620:8–26. doi:10.1016/j.aca.2008.05.022.
  • Velasco-Garcia MN. Optical biosensors for probing at the cellular level: a review of recent progress and future prospects. Sem Cell Dev Biol. 2009;20:27–33. doi:10.1016/j.semcdb.2009.01.013.
  • Bozzini S, Petrini P, Tanzi MC, et al. Poly(ethylene glycol) and hydroxy functionalized alkane phosphate mixed self-assembled monolayers to control nonspecific adsorption of proteins on titanium oxide surfaces. Langmuir. 2009;26:6529−6534. doi:10.1021/la904066y.
  • Prime KL, Whitesides GM. Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science. 1991;252:1164−1167. doi:10.1126/science.252.5009.1164.
  • Li LY, Chen SF, Zheng J, et al. protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: the molecular basis for nonfouling behavior. J Phys Chem B. 2005;109:2934−2941. doi:10.1021/jp0473321.
  • Kühnau U, Petrov AG, Klose G, et al. Measurements of anchoring energy of a nematic liquid crystal, 4-cyano-4ʹ-n-pentylbiphenyl 4′−n-pentylbiphenyl, on Langmuir-Blodgett films of dipalmitoyl phosphatidylcholine. Phys Rev E. 1999;59:578−585. doi:10.1103/PhysRevE.59.578.
  • Stuart MAC, Huck WTS, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9:101−113. doi:10.1038/nmat2614.
  • Bhat RR, Chaney BN, Rowley J, et al. Tailoring cell adhesion using surface-grafted polymer gradient assemblies. Adv Mater. 2005;17:2802−2807. doi:10.1002/adma.200500858.
  • Halstenberg S, Panitch A, Rizzi S, et al. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules. 2002;3:710−723. doi:10.1021/bm015629o.
  • Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997;18:1573−1583. doi:10.1016/S0142-9612(97)00144-0.
  • Brake JM, Abbott NL. an experimental system for imaging the reversible adsorption of amphiphiles at aqueous-liquid crystal interfaces. Langmuir. 2002;18:6101−6109. doi:10.1021/la011746t.
  • Brake JM, Daschner MK, Luk YY, et al. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science. 2003;302:2094−2097. doi:10.1126/science.1091749.
  • Price AD, Schwartz DK. DNA Hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface. J Am Chem Soc. 2008;130:8188−8194. doi:10.1021/ja0774055.
  • Birchall LS, Ulijn RV, Webb SJ. A combined SPS–LCD sensor for screening protease specificity. Chem Commun. 2008;2861−2863. doi:10.1039/b805321a.
  • Nathan A, Lockwood 1, Jugal K, et al. Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases. Surf Sci Rep. 2008;63:255–293. doi:10.1016/j.surfrep.2008.02.002.
  • Carlton RJ, Hunter JT, Miller DS, et al. Chemical and biological sensing using liquid crystals. Liq Cryst Rev. 2013;1:29–51. doi:10.1080/21680396.2013.769310.
  • Wang D, Park S-Y, Kang I-K. Liquid crystals: emerging materials for use in real-time detection applications. J Mater Chem C. 2015;3:9038—9047. doi:10.1039/c5tc01321f.
  • Collings PJ, Hird M. Introduction to liquid crystals chemistry and physics. London: Taylor & Francis; 1997.
  • Jerome B. Surface effects and anchoring in liquid crystals. Rep Prog Phys. 1991;54:391−451. doi:10.1088/0034-4885/54/3/002.
  • Agarwal A, Sidiq S, Setia S, et al. Colloid-in-liquid crystal gels that respond to biomolecular interactions. Small. 2013;9:2785–2795. doi:10.1002/smll.201202869.
  • Loudet JC, Barois P, Poulin P. Colloidal ordering from phase separation in a liquid crystalline continuous phase. Nature. 2000;407:611–613. doi:10.1038/35036539.
  • Agarwal A, Huang E, Palecek S, et al. Optically responsive and mechanically tunable colloid-in-liquid crystal gels that support growth of fibroblasts. Adv Mater. 2008;20:4804–4809. doi:10.1002/adma.200800932.
  • Pal SK, Agarwal A, Abbott NL. Chemically responsive gels prepared from microspheres dispersed in liquid crystals. Small. 2009;5:2589–2596. doi:10.1002/smll.200900961.
  • Darning C, Sridharamurthy SS, Hunter JT, et al. A sensing device using liquid crystal in a micropillar array supporting structure. J Microelectromech Syst. 2009;18:973–982. doi:10.1109/JMEMS.2009.2029977.
  • Gupta JK, Sivakumar S, Caruso F, et al. Size-dependent ordering of liquid crystals observed in polymeric capsules with micrometer and smaller diameters. Angew Chem Int Ed. 2009;48:1652–1655. doi:10.1002/anie.200804500.
  • Tong X, Chung JW, Park SY, et al. Self-assembled liquid-crystal gels in an emulsion. Langmuir. 2009;25:8532–8537. doi:10.1021/la8031094.
  • Lin IH, Miller DS, Bertics PJ, et al. Endotoxin-induced structural transformations in liquid crystalline droplets. Science. 2011;332:1297−1300. doi:10.1126/science.1195639.
  • Das D, Sidiq S, Pal SK. A simple quantitative method to study protein–lipopolysaccharide interactions by using liquid crystals. ChemPhysChem. 2015;16:753–760. doi:10.1002/cphc.201402739.
  • Sidiq S, Verma I, Pal SK. pH-Driven ordering transitions in liquid crystal induced by conformational changes of cardiolipin. Langmuir. 2015;31:4741–4751. doi:10.1021/acs.langmuir.5b00798.
  • Das D, Sidiq S, Pal SK. Design of bio-molecular interfaces using liquid crystals demonstrating endotoxin interactions with bacterial cell wall components. RSC Adv. 2015;5:66476–66486. doi:10.1039/c5ra09640e.
  • Verma I, Sidiq S, Pal SK. Detection of creatinine using surface-driven ordering transitions of liquid crystals. Liq Cryst. 2016;43:1126–1134. doi:10.1080/02678292.2016.1161092.
  • Hartono D, Xue CY, Yang K-L, et al. decorating liquid crystal surfaces with proteins for real-time detection of specific protein–protein binding. Adv Funct Mater. 2009;19:3574–3579. doi:10.1002/adfm.200901020.
  • Tan LN, Orler VJ, Abbott NL. Ordering transitions triggered by specific binding of vesicles to protein-decorated interfaces of thermotropic liquid crystals. Langmuir. 2012;28:6364–6376. doi:10.1021/la300108f.
  • Hartono D, Lai SL, Yang K-L, et al. A liquid crystal-based sensor for real-time and label-free identification of phospholipase-like toxins and their inhibitors. Biosens Bioelectron. 2009;24:2289–2293. doi:10.1016/j.bios.2008.11.021.
  • Liu D, Hu QZ, Jang CH, et al. Orientational behaviors of liquid crystals coupled to chitosan-disrupted phospholipid membranes at the aqueous–liquid crystal interface. Colloid Surface B. 2013;108:142–146. doi:10.1016/j.colsurfb.2013.02.047.
  • Hu QZ, Jang CH. Using liquid crystals to report molecular interactions between cationic antimicrobial peptides and lipid membranes. Analyst. 2012;137:567–570. doi:10.1039/c1an15743d.
  • Tesh VL, Morrison DC. The physical-chemical characterization and biologic activity of serum released lipopolysaccharides. J Immunol. 1988;141:3523–3531.
  • Machnicki M, Zimecki M, Zagulski T. Lactoferrin regulates the release of tumour necrosis factor alpha and interleukin 6 in vivo. Int J Exp Pathol. 1993;74:433–439.
  • Roth RI, Kaca W. Toxicity of hemoglobin solutions: hemoglobin is a lipopolysaccharide (Lps) binding protein which enhances lps biological activity. Biomater Artif Cells Immobilization Biotechnol. 1994;22:387–398. doi:10.3109/10731199409117869.
  • Yu B, Wright SD. Catalytic properties of lipopolysaccharide (LPS) binding protein transfer of LPS to soluble CD14. J Biol Chem. 1996;271:4100–4105. doi:10.1074/jbc.271.8.4100.
  • Yang F, Yang X. Kinetic analysis of interaction between lipopolysaccharide and biomolecules. Front Chem China. 2008;3:14–17. doi:10.1007/s11458-008-0005-4.
  • Hoch FL. Cardiolipins and Biomembrane Function. Biochim Biophys Acta. 1992;1113:71−133. doi:10.1016/0304-4157(92)90035-9.
  • Dowhan W. molecular basis for membrane phospholipid diversity: why are there so many lipids. Annu Rev Biochem. 1997;66:199−232. doi:10.1146/annurev.biochem.66.1.199.
  • McAuley KE, Fyfe PK, Ridge JP, et al. structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci USA. 1999;96:14706−14711. doi:10.1073/pnas.96.26.14706.
  • Osman C, Voelker DR, Langer T. making heads or tails of phospholipids in mitochondria. J Cell Biol. 2011;192:7−16. doi:10.1083/jcb.201006159.
  • Haines TH, Dencher NA. Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett. 2002;528:35−39. doi:10.1016/S0014-5793(02)03292-1.
  • Takada H, Galanos C. Enhancement of endotoxin lethality and generation of anaphylactoid reactions by lipopolysaccharides in muramyl-dipeptide-treated mice. Infect Immun. 1987;55:409–413.
  • Sugawara S, Arakaki R, Rikiishi H, et al. lipoteichoic acid acts as an antagonist and an agonist of lipopolysaccharide on human gingival fibroblasts and monocytes in a CD14-dependent manner. Infect Immun. 1999;67:1623–1632.
  • Wary GM, Foster SJ, Hinds CJ, et al. A cell wall component from pathogenic and non-pathogenic gram-positive bacteria (Peptidoglycan) synergises with endotoxin to cause the release of tumour necrosis factor-[Alpha], nitric oxide production, shock, and multiple organ injury/dysfunction in the rat. Shock. 2001;15:135–142.
  • Wolfert MA, Murray TF, Boons GJ, et al. The origin of the synergistic effect of muramyl dipeptide with endotoxin and peptidoglycan. J Biol Chem. 2002;277:39179–39186. doi:10.1074/jbc.M204885200.
  • Wang JE, Jorgensen PF, Ellingsen EA, et al. Peptidoglycan primes for LPS-induced release of proinflammatory cytokines in whole human blood. Shock. 2011;16:178–182. doi:10.1097/00024382-200116030-00002.
  • Vagenende V, Ching T-J, Chua R-J, et al. Self-assembly of lipopolysaccharide layers on allantoin crystals. Colloids Surf B. 2014;120:8–14. doi:10.1016/j.colsurfb.2014.04.008.
  • Das D, Pal SK. Liquid crystal mediated interactions between melittin and phospholipids at aqueous-liquid crystal interface. Forthcoming 2016.
  • Das D, Pani I, Pal SK. Design and Biophysical characterization of the interaction of bacterial endotoxin with lactoferrin based on Liquid Crystals. Forthcoming 2016.
  • Sena FS, Syed D, McComb RB. Effect of high creatine content on the Kodak single slide method for creatinine. Clin Chem. 1988;34:594–595.
  • Killard AJ, Smyth MR. Creatinine biosensors: principles and designs. Trends in Biotechnol. 2000;18:433–437. doi:10.1016/S0167-7799(00)01491-8.
  • Lad U, Khokhar S, Kale GM. Electrochemical creatinine biosensors. Anal Chem. 2008;80:7910–7917. doi:10.1021/ac801500t.
  • Tsuchida T, Yoda K. Multi-enzyme membrane electrodes for determination of creatinine and creatine in serum. Clin Chem. 1983;29:51–55.
  • Shepherd MDS. Point-of-care testing and creatinine measurement. Clin Biochem Rev. 2011;32:109–114.
  • Kinsinger MI, Sun B, Abbott NL, et al. Reversible control of ordering transitions at aqueous/liquid crystal interfaces using functional amphiphilic polymers. Adv Mater. 2007;19:4208. doi:10.1002/adma.200700718.
  • Lee D-Y, Seo J-M, Khan W. pH-responsive aqueous/LC interfaces using SGLCP-b-polyacrylic acid block copolymers. Soft Matter. 2010;6:1964–1970. doi:10.1039/b926461b.
  • Seo J-M, Khan W, Park S-Y. Protein detection using aqueous/LC interfaces decorated with a novel polyacrylic acid block liquid crystalline polymer. Soft Matter. 2012;8:198–203. doi:10.1039/c1sm06616a.
  • Khan M, Park S-Y. Liquid crystal-based proton sensitive glucose biosensor. Anal Chem. 2014;86:1493–1501. doi:10.1021/ac402916v.
  • Bi X, Hartono D, Yang K-L. Real-time liquid crystal pH sensor for monitoring enzymatic activities of penicillinase. Adv Funct Mater. 2009;19:3760–3765. doi:10.1002/adfm.200900823.
  • Wei Y, Jang C-H. Detection of cholesterol molecules with a liquid crystal-based pH-driven sensor. J Mater Sci. 2015;50:4741–4748. doi:10.1007/s10853-015-9027-8.
  • Hu Q-Z, Jang C-H. Using liquid crystals for the realtime detection of urease at aqueous/liquid crystal interfaces. J Mater Sci. 2012;47:969–975. doi:10.1007/s10853-011-5876-y.
  • Sivakumar S, Wark KL, Gupta JK, et al. Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses. Adv Funct Mater. 2009;19:2260−2265. doi:10.1002/adfm.200900399.
  • Gupta JK, Zimmerman JS, de Pablo JJ, et al. Characterization of adsorbate-induced ordering transitions of liquid crystals within monodisperse droplets. Langmuir. 2009;25:9016−9024. doi:10.1021/la900786b.
  • Kinsinger MI, Buck ME, Abbott NL, et al. Immobilization of polymer-decorated liquid crystal droplets on chemically tailored surfaces. Langmuir. 2010;26:10234–10242. doi:10.1021/la100376u.
  • Aliño VJ, Pang J, Yang K-L. Liquid crystal droplets as a hosting and sensing platform for developing immunoassays. Langmuir. 2011;27:11784–11789. doi:10.1021/la2022215.
  • Khan W, Choi JH, Kim GM, et al. Microfluidic formation of pH responsive 5CB droplets decorated with PAA-b-LCP. Lab Chip. 2011;11:3493–3498. doi:10.1039/C1LC20402E.
  • Zou J, Bera T, Davis AA, et al. director configuration transitions of polyelectrolyte coated liquid-crystal droplets. J Phys Chem B. 2011;115:8970–8974. doi:10.1021/jp201909m.
  • Aliño VJ, Tay KX, Khan SA, et al. Inkjet printing and release of monodisperse liquid crystal droplets from solid surfaces. Langmuir. 2012;28:14540–14546. doi:10.1021/la3028463.
  • Bera T, Fang J. Polyelectrolyte-coated liquid crystal droplets for detecting charged macromolecules. J Mater Chem. 2012;22:6807–6812. doi:10.1039/C2JM00038E.
  • Bera T, Fang J. Optical detection of lithocholic acid with liquid crystal emulsions. Langmuir. 2013;29:387–392. doi:10.1021/la303771t.
  • Manna U, Zayas-Gonzalez YM, Carlton RJ, et al. Liquid crystal chemical sensors that cells can wear. Angew Chem Int Ed. 2013;52:14011–14015. doi:10.1002/anie.201306630.
  • Miller DS, Wang X, Abbott NL. Design of functional materials based on liquid crystalline droplets. Chem Mater. 2014;26:496−506. doi:10.1021/cm4025028.
  • Tan LN, Wiepz GJ, Miller DS, et al. Liquid crystal droplet-based amplification of microvesicles that are shed by mammalian cells. Analyst. 2014;139:2386–2396. doi:10.1039/c3an02360e.
  • Yoon SH, Gupta KC, Borah JS, et al. Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells. Langmuir. 2014;30:10668−10677. doi:10.1021/la502032k.
  • Sidiq S, Das D, Pal SK. A new pathway for the formation of radial nematic droplets within a lipid-laden aqueous-liquid crystal interface. RSC Adv. 2014;4:18889–18893. doi:10.1039/C3RA48044E.
  • Sadati M, Apik AI, Armas-Perez JC, et al. Liquid crystal enabled early stage detection of beta amyloid formation on lipid monolayers. Adv Funct Mater. 2015;25:6050–6060. doi:10.1002/adfm.201502830.
  • Geffroy B, Le Roy P, Prat C. Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym Int. 2006;55:572–582. doi:10.1002/pi.1974.
  • Kulkarni AP, Tonzola CJ, Babel A, et al. Electron transport materials for organic light-emitting diodes. Chem Mater. 2004;16:4556–4573. doi:10.1021/cm049473l.
  • Reineke S, Lindner F, Schwartz G, et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature. 2009;459:234–238. doi:10.1038/nature08003.
  • Kalyani NT, Dhoble SJ. Organic light emitting diodes: energy saving lighting technology—A review. Renew Sust Energ Rev. 2012;16:2696–2723. doi:10.1016/j.rser.2012.02.021.
  • Kumar S. Self-organization of disc-like molecules: chemical aspects. Chem Soc Rev. 2006;35:83–109. doi:10.1039/B506619K.
  • Wöhrle T, Wurzbach I, Kirres J, et al. Discotic liquid crystals. Chem Rev. 2016;116:1139–1241. doi:10.1021/acs.chemrev.5b00190.
  • Kumar S. Rufigallol-based self-assembled supramolecular architectures. Phase Transitions. 2008;81:113–128. doi:10.1080/01411590701601610.
  • Ferreira ESB, Hulme AN, McNab H, et al. The natural constituents of historical textile dyes. Chem Soc Rev. 2004;33:329–336. doi:10.1039/B305697J.
  • Maier ME, Bosse F, Niestroj AJ. Design and synthesis of dynemicin analogs. Eur J Org Chem. 1999;1999:1–13. doi:10.1002/(SICI)1099-0690(199901)1999:1<1::AID-EJOC1>3.0.CO;2-D.
  • Catellani M, Luzzati S, Lupsac NO, et al. Donor–acceptor polythiophene copolymers with tunable acceptor content for photoelectric conversion devices. J Mater Chem. 2004;14:67–74. doi:10.1039/B311370A.
  • Mamada M, Nishida J, Tokito S, et al. Anthraquinone derivatives affording n-type organic thin film transistors. Chem Commun. 2009;2177–2179. doi:10.1039/B820520E.
  • Murschell AE, Sutherland TC. Anthraquinone-based discotic liquid crystals. Langmuir. 2010;26:12859–12866. doi:10.1021/la101406s.
  • Setia S, Sidiq S, Pal SK. Microwave-assisted synthesis of novel oligomeric rod-disc hybrids. Tetrahedron Lett. 2012;53:6446–6450. doi:10.1016/j.tetlet.2012.09.058.
  • Pal SK, Kumar S, Seth J. Synthesis and characterisation of novel rod–disc oligomers. Liq Cryst. 2008;35:521–525. doi:10.1080/02678290802051072.
  • Pal SK, Kumar S. Synthesis and characterisation of novel alkoxycyanobiphenyl-substituted rufigallols. Liq Cryst. 2013;40:281–292. doi:10.1080/02678292.2012.747112.
  • Setia S, Soni A, Gupta M, et al. Microwave-assisted synthesis of novel mixed tail rufigallol derivatives. Liq Cryst. 2013;40:1364–1372. doi:10.1080/02678292.2013.811550.
  • Kumar S, Naidu J, Varshney SK. Combination of electron-deficient and electron-rich discotic liquid crystals in novel unsymmetrical columnar twins. Mol Cryst Liq Cryst. 2004;411:355–362. doi:10.1080/15421400490435387.
  • Carfagna C, Iannelli P, Roviello A, et al. Discotic mesomorphism of rufigallol hexa-n-alkoxylates. Liq Cryst. 1987;2:611–616. doi:10.1080/02678298708086319.
  • Grimsdale AC, Chan KL, Martin RE, et al. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev. 2009;109:897–1091. doi:10.1021/cr000013v.
  • Malenfant PRL, Dimitrakopoulos CD, Gelorme JD, et al. N-type organic thin-film transistor with high field-effect mobility based on a N,N′-dialkyl- 3,4,9,10-perylene tetracarboxylic diimide derivative. Appl Phys Lett. 2002;80:2517–2519. doi:10.1063/1.1467706.
  • Würthner F, Bauer C, Stepanenko V, et al. A black perylene bisimide super gelator with an unexpected j-type absorption band. Adv Mater. 2008;20:1695–1698. doi:10.1002/adma.200702935.
  • Cormier RA, Gregg BA. Self-organization in thin films of liquid crystalline perylene diimides. J Phys Chem B. 1997;101:11004–11006. doi:10.1021/jp9732064.
  • Cormier RA, Gregg BA. Synthesis and characterization of liquid crystalline perylene diimides. Chem Mater. 1998;10:1309–1319. doi:10.1021/cm970695b.
  • Benning S, Kitzerow H-S, Bock H, et al. Liq Cryst. 2000;27:901–906. doi:10.1080/02678290050043842.
  • Saidi-Besbes S, Grelet E, Bock H. Soluble and liquid‐crystalline ovalenes. Angew Chem Int Ed. 2006;45:1783–1786. doi:10.1002/anie.200503601.
  • Wolarz E, Mykowska E, Martyński T, et al. Electronic absorption and fluorescence of new tetrafluoro-pentenyl-perylene in isotropic solvents, liquid crystal layers, and LB films. J Mol Struct. 2009;929:79–84. doi:10.1016/j.molstruc.2009.04.010.
  • Stolarski R, Fiksinski K. Fluorescent perylene dyes for liquid crystal displays. Dyes Pigments. 1994;24:295–303. doi:10.1016/0143-7208(94)87005-5.
  • Xue C, Sun R, Annab R, et al. Perylene monoanhydride diester: a versatile intermediate for the synthesis of unsymmetrically substituted perylene tetracarboxylic derivatives. Tetrahedron Lett. 2009;50:853–856. doi:10.1016/j.tetlet.2008.11.084.
  • Wicklein A, Muth M-A, Thelakkat M. Room temperature liquid crystalline perylene diester benzimidazoles with extended absorption. J Mater Chem. 2010;20:8646–8652. doi:10.1039/c0jm01626h.
  • Mo X, Chen HZ, Shi MM, et al. Syntheses and aggregate behaviors of liquid crystalline alkoxycarbonyl substituted perylenes. Chem Phys Lett. 2006;417:457–460. doi:10.1016/j.cplett.2005.10.043.
  • Mo X, Shi MM, Huang JC, et al. Synthesis, aggregation and photoconductive properties of alkoxycarbonyl substituted perylenes. Dyes Pigments. 2008;76:236–242. doi:10.1016/j.dyepig.2006.08.035.
  • Gupta SK, Setia S, Sidiq S, et al. New perylene-based non-conventional discotic liquid crystals. RSC Adv. 2013;3:12060–12065. doi:10.1039/C3RA41186A.
  • Gupta RK, Pradhan B, Pathak SK, et al. Perylo[1,12-b,c,d] thiophene tetraesters: a new class of luminescent columnar liquid crystals. Langmuir. 2015;31:8092–8100. doi:10.1021/acs.langmuir.5b01187.
  • Gupta RK, Pathak SK, Pradhan B, et al. Self-assembly of luminescent N-annulated perylene tetraesters into fluid columnar phases. Soft Matter. 2015;11:3629−3636. doi:10.1039/C5SM00463B.
  • Jiang W, Qian H, Li Y, et al. Heteroatom-annulated perylenes: practical synthesis, photophysical properties, and solid-state packing arrangement. J Org Chem. 2008;73:7369–7372. doi:10.1021/jo8012622.
  • Simpson CD, Wu J, Watson MD, et al. From graphite molecules to columnar superstructures − an exercise in nanoscience. J Mater Chem. 2004;14:494−504. doi:10.1039/B312789C.
  • Achalkumar AS, Hiremath US, Rao DSS, et al. Self-assembly of hekates-tris(Nsalicylideneaniline)s into columnar structures: synthesis and characterization. J Org Chem. 2013;78:527–544. doi:10.1021/jo302332u.
  • Kasha M, Rawls HR, El-Bayoumi MA. The exciton model in molecular spectroscopy. Pure Appl Chem. 1965;11:371–392. doi:10.1351/pac196511030371.
  • Prabhu DD, Sivadas AP, Das S. Solvent assisted fluorescence modulation of a C3-symmetric organogelator. J Mater Chem C. 2014;2:7039–7046. doi:10.1039/C4TC01008F.
  • Spano FC. The spectral signatures of Frenkel polarons in Hand J-aggregates. Acc Chem Res. 2010;43:429–439. doi:10.1021/ar900233v.
  • Gupta RK, Pathak SK, Pradhan B, et al. Bay-annulated perylene tetraesters: a new class of discotic liquid crystals. ChemPhysChem. 2016;17:859–872. doi:10.1002/cphc.201501028.
  • De J, Setia S, Pal SK. Synthesis, mesomorphism and photoluminescence of a new class of anthracene-based discotic liquid crystals. Forthcoming.
  • Hill JP, Jin W, Kosaka A, et al. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. Science. 2004;304:1481–1483. doi:10.1126/science.1097789.
  • Schmidt-Mende L, Fechtenkötter A, Mullen K, et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science. 2001;293:1119–1122. doi:10.1126/science.293.5532.1119.
  • Crispin X, Cornil J, Friedlein R, et al. Electronic delocalization in discotic liquid crystals: a joint experimental and theoretical study. J Am Chem Soc. 2004;126:11889–11899. doi:10.1021/ja048669j.
  • Zhang Q, Prins P, Jones SC, et al. A fluorine-substituted hexakisdecyloxy- hexa-peri-hexabenzocoronene. Org Lett. 2005;7:5019–5022. doi:10.1021/ol051972k.
  • Wang Z, Watson MD, Wu J, et al. Partially stripped insulated nanowires: a lightly substituted hexa-peri-hexabenzocoronene-based columnar liquid crystal. Chem Commun. 2004;336–337. doi:10.1039/B311651D.
  • Feng X, Pisula W, Takase M, et al. Unusual symmetry effect on hexa-peri-hexabenzocoronene. Chem Mater. 2008;20:2872–2874. doi:10.1021/cm702592q.
  • Setia S, Pal SK. Unsymmetrically substituted room temperature discotic liquid crystals based on hexa–peri–hexabenzocoronene core. Chem Select. 2016;1:880–885. doi:10.1002/slct.201600107.
  • Dou X, Yang X, Bodwell GJ, et al. unexpected phenyl group rearrangement during an intramolecular scholl reaction leading to an alkoxy-substituted hexa-peri-hexabenzocoronene. Org Lett. 2007;9:2485–2488. doi:10.1021/ol0708018.
  • Emrick T, Pentzer E. Nanoscale assembly into extended and continuous structures and hybrid materials. NPG Asia Mater. 2013;5:e43/1–15. doi:10.1038/am.2012.73.
  • Pathak SK, Pradhan B, Gupta RK, et al. Aromatic π-π driven supergelation, aggregation induced emission and columnar self-assembly of star-shaped 1,2,4-oxadiazole derivatives. J Mater Chem C. 2016;4:6546–6561. doi:10.1039/C6TC01939K.
  • Achalkumar AS, Hiremath US, Rao DSS, et al. Self-assembly of hekates-tris(N-salicylideneaniline)s into columnar structures: synthesis and characterization. J Org Chem. 2013;78:527–544. doi:10.1021/jo302332u.
  • Achalkumar AS, Yelamaggad CV. Light emitting, star-shaped tris(N-salicylideneaniline) discotic liquid crystals bearing trans-stilbene fluorophores: synthesis and characterization. Tetrahedron Lett. 2012;53:7108–7112. doi:10.1016/j.tetlet.2012.10.090.
  • Achalkumar AS, Veerabhadraswamy BN, Hiremath US, et al. Photoluminescent discotic liquid crystals derived from tris(N-salicylideneaniline) and stilbene conjugates: structure–property correlations. Dyes and Pigments. 2016;132:291–305. doi:10.1016/j.dyepig.2016.05.010.
  • Pradhan B, Pathak SK, Gupta RK, et al. Star-shaped fluorescent liquid crystals derived from s-triazine and1,3,4-oxadiazole moieties. J Mater Chem C. 2016;4:6117–6130. doi:10.1039/C6TC01260D.
  • Kumar S. Triphenylene‐based discotic liquid crystal dimers, oligomers and polymers. Liq Cryst. 2005;32:1089–1113. doi:10.1080/02678290500117415.
  • Pal SK, Setia S, Avinash BS, et al. Triphenylene-based discotic liquid crystals: recent advances. Liq Cryst. 2013;40:1769–1816. doi:10.1080/02678292.2013.854418.
  • Gupta M, Bala I, Pal SK. A room temperature discotic mesogenic triphenylene-pentaalkynylbenzene dyad. Tetrahedron Lett. 2014;55:5836–5840. doi:10.1016/j.tetlet.2014.08.091.
  • Gupta SK, Raghunathan VK, Lakshminarayanan V, et al. Novel benzene-bridged triphenylene-based discotic dyads. J Phys Chem B. 2009;113:12887–12895. doi:10.1021/jp9042254.
  • Janietz D, Praefcke K, Singer D. New disc-shaped mesogens based on pentakis(phenylethynyl)benzene derivatives. Liq Cryst. 1993;13:247–253. doi:10.1080/02678299308026298.
  • Gupta M, Pal SK. Triphenylene-based room-temperature discotic liquid crystals: a new class of blue-light-emitting materials with long-range columnar self-assembly. Langmuir. 2016;32:1120–1126. doi:10.1021/acs.langmuir.5b03353.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.