540
Views
6
CrossRef citations to date
0
Altmetric
Invited Article

Nematic liquid crystal gyroids as photonic crystals

, , &
Pages 2320-2331 | Received 14 Jun 2016, Accepted 18 Jul 2016, Published online: 04 Aug 2016

References

  • Sihvola A. Enabling optical analog computing with metamaterials. Science. 2014;343:144–145.
  • Nissim R, Pejkic A, Myslivets E, et al. Ultrafast optical control by few photons in engineered fiber. Science. 2014;345:417–419.
  • Wolf S, Supatto W, Debrégeas G, et al. Whole-brain functional imaging with two-photon light-sheet microscopy. Nat Methods. 2015;12:379–380.
  • Pi-Gang L. Current trends of optics and photonics. Dordrecht: Springer; 2015.
  • Segal N, Keren-Zur S, Hendler N, et al. Controlling light with metamaterial-based nonlinear photonic crystals. Nature Photonics. 2015;9:180–184.
  • Gan Z, Cao Y, Evans RA, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat Commun. 2013;4:2061.
  • Yang S, Ni X, Yin X, et al. Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution. Nat Nanotechnol. 2016;9:1002.
  • Stratford K, Henrich O, Lintuvuori JS, et al. Self-assembly of colloid-cholesteric composites provides a possible route to switchable optical materials. Nat Comm. 2014;5:3954.
  • Vitek M, Muševi I. Nanosecond control and optical pulse shaping by stimulated emission depletion in a liquid crystal. Opt Express. 2015;23(13):16921.
  • Yablonovitch E, Gmitter T, Leung K. Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys Rev Lett. 1991;67:2295–2298.
  • Joannopulous JD, Johnson SG, Winn JN, et al. Photonic crystals – molding the flow of light. 2nd ed ed. Princeton (NJ): Princeton University Press; 2008.
  • Alexandridis P, Olsson U, Lindman B. A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir. 1998;14:2627–2638.
  • Squires A, Templer RH, Ces O, et al. Kinetics of lyotropic phase transitions involving the inverse bicontinuous cubic phases. Langmuir. 2000;16:3578–3582.
  • Ghiradella H. Light and color on the wing: structural colors in butterflies and moths. Appl Opt. 1991;30:3492.
  • Biró L, Vigneron J. Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration. Laser Photon Rev. 2011;5:27–51.
  • Mille C, Tyrode EC, Corkery RW. 3d titania photonic crystals replicated from gyroid structures in butterfly wing scales: approaching full band gaps at visible wavelengths. RSC Adv. 2013;3:3109.
  • Turner MD, Saba M, Zhang Q, et al. Miniature chiral beamsplitter based on gyroid photonic crystals. Nature Photon. 2013;7:801–805.
  • Crossland EJW, Ludwigs S, Hillmyer MA, et al. Control of gyroid forming block copolymer templates: effects of an electric field and surface topography. Soft Matter. 2010;6:670.
  • Guldin S, Hüttner S, Kolle M, et al. Dye-sensitized solar cell based on a three-dimensional photonic crystal. Nano Lett. 2010;10:2303–2309.
  • Dolan JA, Wilts BD, Vignolini S, et al. Optical properties of gyroid structured materials: from photonic crystals to metamaterials. Advanced Opt Mater. 2015;3:12–32.
  • Finnemore AS, Scherer MRJ, Langford R, et al. Nanostructured calcite single crystals with gyroid morphologies. Adv Mater. 2009;21:3928.
  • Scherer MRJ, Li L, Cunha PMS, et al. Enhanced electrochromism in gyroid-structured vanadium pentoxide. Adv Mater. 2012;24:1217–1221.
  • Scherer MRJ, Steiner U. Efficient electrochromic devices made from 3d nanotubular gyroid networks. Nano Lett. 2013;13:3005–3010.
  • Farah P, Demetriadou A, Salvatore S, et al. Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials. Phys Applied. 2014;2:044002.
  • Wood TA, Lintuvuori JS, Schofield AB, et al. A self-quenched defect glass in a colloid-nematic liquid crystal composite. Science. 2011;334:79–83.
  • Xiang J, Lavrentovich OD. Blue-phase-polymer-templated nematic with sub-millisecond broad-temperature range electro-optic switching. Appl Phys Lett. 2013;103:051112.
  • Senyukh B, Liu QSH, Kamien RD, et al. Topological colloids. Nature. 2013;493:200.
  • Martinez A, Ravnik M, Lucero B, et al. Mutually tangled colloidal knots and induced defect loops in nematic fields. Nat Mater. 2014;13:258–263.
  • Senyuk B, Liu Q, He S, et al. Topological colloids. Nature. 2012;493:200–205.
  • Dontabhaktuni J, Ravnik M, Zumer S. Quasicrystalline tilings with nematic colloidal platelets. Proc Natl Acad Sci. 2014;111:2464–2469.
  • Nych A, Ognysta U, Skarabot M, et al. Assembly and control of 3d nematic dipolar colloidal crystals. Nat Commun. 2013;4:1489.
  • Mundoor H, Senyuk B, Smalyukh II. Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions. Science. 2016;352:69–73.
  • Araki T, Buscaglia M, Bellini T, et al. Memory and topological frustration in nematic liquid crystals confined in porous materials. Science. 2011;10:303.
  • Lopez-Leon T, Koning V, Devaiah KBS, et al. Frustrated nematic order in spherical geometries. Nat Phys. 2011;7:391–394.
  • Smalyukh II, Lansac Y, Clark NA, et al. Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids. Nat Mater. 2010;9:139–145.
  • Ackerman PJ, van de Lagemaat J, Smalyukh II. Self-assembly and electrostriction of arrays and chains of hopfion particles in chiral liquid crystals. Nat Comm. 2015;6:6012.
  • Seč D, Čopar S, Žumer S. Topological zoo of free-standing knots in confined chiral nematic fluids. Nat Commun. 2014;5:3057.
  • Orlova T, Aßhoff SJ, Yamaguchi T, et al. Creation and manipulation of topological states in chiral nematic microspheres. Nat Commun. 2015;6:7603.
  • Kikuchi H, Izena S, Higuchi H, et al. A giant polymer lattice in a polymer-stabilized blue phase liquid crystal. Soft Matter. 2015;11:4572–4575.
  • Coles H, Morris S. Liquid-crystal lasers. Nat Photonics. 2010;4:676–685.
  • Humar M, Ravnik M, Pajk S, et al. Electrically tunable liquid crystal optical microresonators. Nat Photonics. 2009;3:595–600.
  • Peddireddy KR, J VS, Thutupalli S, et al. Lasing and waveguiding in smectic a liquid crystal optical fibers. Opt Express. 2013;21:30233.
  • Kosa T, Sukhomlinova L, Su L, et al. Light-induced liquid crystallinity. Nature. 2012;485:347–349.
  • Cao W, Muñoz A, Palffy-Muhoray P, et al. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase ii. Nat Matter. 2002;1:111–113.
  • Mowatt C, Morris SM, Wilkinson TD, et al. High slope efficiency liquid crystal lasers. Appl Phys Lett. 2010;97:251109.
  • Hands PJ, Gardiner D, Morris S, et al. Widely and continuously tuneable liquid crystal lasers. Opt Express. 2011;19:2432.
  • Ko DH, Morris SM, Lorenz A, et al. A nano-patterned photonic crystal laser with a dye-doped liquid crystal. Appl Phys Lett. 2013;103:051101.
  • Hornreich R, Shtrikman S, Sommers C. Photonic bands in simple and body-centered-cubic cholesteric blue phases. Phys Rev E. 1993;47:2067–2072.
  • Stimulak M, Ravnik M. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases. Soft Matter. 2014;10:6339.
  • Humar M, Muševič I. 3d microlasers from self-assembled cholesteric liquid-crystal microdroplets. Opt Express. 2010;18:26995.
  • Muševič I. Liquid-crystal micro-photonics. Liq Cryst Rev. 2016;4:1–34.
  • Khoo IC. Nonlinear optics, active plasmonics and metamaterials with liquid crystals. Prog Quantum Electron. 2014;38:77–117.
  • Aguirre LE, De Oliveira A, Seč D, et al. Sensing surface morphology of biofibers by decorating spider silk and cellulosic filaments with nematic microdroplets. Proc Natl Acad Sci. 2016;113:1174–1179.
  • Ravnik M, Žumer S. Landau-de Gennes modelling of nematic liquid crystal colloids. Liq Cryst. 2009;36:1201–1214.
  • de Gennes PG, Prost J. The physics of liquid crystals. Oxford: Oxford University Press; 1993.
  • Nobili M, Durand G. Disorientation-induced disordering at a nematic-liquid-crystal–solid interface. Phys Rev A. 1992;46:R6174–R6177.
  • von Schnering HG, Nesper R. Nodal surfaces of fourier series: fundamental invariants of structured matter. Z Phys B Con Mat. 1991;83:407.
  • Scherer MRJ. Double-gyroid-structured functional materials. Cham: Springer International Publishing Switzerland; 2013.
  • Čopar S, Porenta T, Žumer S. Visualisation methods for complex nematic fields. Liq Cryst. 2013;40:1759–1768.
  • Johnson SG, Joannopoulos JD. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt Express. 2001;8:173.
  • Saba M, Thiel M, Turner MD, et al. Circular dichroism in biological photonic crystals and cubic chiral nets. Phys Rev Lett. 2011;106:103902.
  • Węgłowska D, Kula P, Herman J. High birefringence bistolane liquid crystals: synthesis and properties. RSC Adv. 2016;6:403–408.
  • Dąbrowski R, Kula P, Herman J. High birefringence liquid crystals. Crystals. 2013;3:443–482.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.