833
Views
36
CrossRef citations to date
0
Altmetric
Invited Article

Deformation of cross-linked liquid crystal polymers by light – from ultraviolet to visible and infrared

, , &
Pages 2114-2135 | Received 04 Jun 2016, Published online: 25 Aug 2016

References

  • Wei J, Yu YL. Photodeformable polymer gels and crosslinked liquid-crystalline polymers. Soft Matter. 2012;8:8050–8059. doi:10.1039/c2sm25474c.
  • Ube T, Ikeda T. Photomobile polymer materials with crosslinked liquid-crystalline structures: molecular design, fabrication, and functions. Angew Chem Int Ed. 2014;53:10290–10299. doi:10.1002/anie.201400513.
  • De Gennes P. Réflexions sur un type de polymères nématiques. CR Acad Sci Ser B. 1975;281:2.
  • De Gennes P-G. A semi-fast artificial muscle. CR Acad Sci Ser IIB. 1997;5:343–348.
  • Kundler I, Finkelmann H. Director reorientation via stripe-domains in nematic elastomers: influence of cross-link density, anisotropy of the network and smectic clusters. Macromol Chem Phys. 1998;199:677–686. doi:10.1002/(ISSN)1521-3935.
  • Küpfer J, Finkelmann H. Nematic liquid single-crystal elastomers. Macromol Rapid Commun. 1991;12:717–726. doi:10.1002/marc.1991.030121211.
  • Buguin A, Li M-H, Silberzan P, et al. Micro-actuators: when artificial muscles made of nematic liquid crystal elastomers meet soft lithography. J Am Chem Soc. 2006;128:1088–1089. doi:10.1021/ja0575070.
  • Ware TH, McConney ME, Wie JJ, et al. Voxelated liquid crystal elastomers. Science. 2015;347:982–984. doi:10.1126/science.1261019.
  • Lehmann W, Skupin H, Tolksdorf C, et al. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature. 2001;410:447–450. doi:10.1038/35068522.
  • Huang C, Zhang QM, Jákli A. Nematic anisotropic liquid-crystal gels - self-assembled nanocomposites with high electromechanical response. Adv Funct Mater. 2003;13:525–529. doi:10.1002/adfm.200304322.
  • Urayama K, Honda S, Takigawa T. Deformation coupled to director rotation in swollen nematic elastomers under electric fields. Macromolecules. 2006;39:1943–1949. doi:10.1021/ma052762q.
  • Winkler M, Kaiser A, Krause S, et al. Liquid crystal elastomers with magnetic actuation. Macromol Symp. 2010;291–292:186–192. doi:10.1002/masy.201050522.
  • Kaiser A, Winkler M, Krause S, et al. Magnetoactive liquid crystal elastomer nanocomposites. J Mater Chem. 2009;19:538–543. doi:10.1039/B813120C.
  • Broer DJ, Bastiaansen CMW, Debije MG, et al. Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems. Angew Chem Int Ed. 2012;51:7102–7109. doi:10.1002/anie.201200883.
  • Harris KD, Bastiaansen CWM, Lub J, et al. Self-assembled polymer films for controlled agent-driven motion. Nano Lett. 2005;5:1857–1860. doi:10.1021/nl0514590.
  • Finkelmann H, Nishikawa E, Pereira GG, et al. A new opto-mechanical effect in solids. Physl Rev Lett. 2001;87:015501. doi:10.1103/PhysRevLett.87.015501.
  • Yu YL, Nakano M, Ikeda T. Photomechanics: directed bending of a polymer film by light. Nature. 2003;425:145–145. doi:10.1038/425145a.
  • White TJ, Broer DJ. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater. 2015;14:1087–1098. doi:10.1038/nmat4433.
  • Ikeda T, Nakano M, Yu Y, et al. Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv Mater. 2003;15:201–205. doi:10.1002/adma.200390045.
  • Iamsaard S, Asshoff SJ, Matt B, et al. Conversion of light into macroscopic helical motion. Nat Chem. 2014;6:229–235. doi:10.1038/nchem.1859.
  • White TJ, Tabiryan NV, Serak SV, et al. A high frequency photodriven polymer oscillator. Soft Matter. 2008;4:1796–1798. doi:10.1039/b805434g.
  • Ikeda T. Photomodulation of liquid crystal orientations for photonic applications. J Mater Chem. 2003;13:2037–2057. doi:10.1039/b306216n.
  • Ikeda T, Horiuchi S, Karanjit DB, et al. Photochemical image storage in polymer liquid-crystals. Chem Lett. 1988;17:1679–1682. doi:10.1246/cl.1988.1679.
  • Ikeda T, Horiuchi S, Karanjit DB, et al. Photochemically induced isothermal phase transition in polymer liquid crystals with mesogenic phenyl benzoate side chains. 1. Calorimetric studies and order parameters. Macromolecules. 1990;23:36–42. doi:10.1021/ma00203a008.
  • Ikeda T, Horiuchi S, Karanjit DB, et al. Photochemically induced isothermal phase-transition in polymer liquid-crystals with mesogenic phenyl benzoate side-chains. 2. photochemically induced isothermal phase-transition behaviors. Macromolecules. 1990;23:42–48. doi:10.1021/ma00203a009.
  • Li M-H, Keller P, Li B, et al. Light-driven side-on nematic elastomer actuators. Adv Mater. 2003;15:569–572. doi:10.1002/adma.200304552.
  • Cviklinski J, Tajbakhsh AR, Terentjev EM. UV isomerisation in nematic elastomers as a route to photo-mechanical transducer. Eur Phys J E. 2002;9:427–434. doi:10.1140/epje/i2002-10095-y.
  • Hogan PM, Tajbakhsh AR, Terentjev EM. UV manipulation of order and macroscopic shape in nematic elastomers. Phys Rev E 2002;65. doi:10.1103/PhysRevE.65.041720.
  • Yoshino T, Kondo M, Mamiya J, et al. Three-dimensional photomobility of crosslinked azobenzene liquid-crystalline polymer fibers. Adv Mater. 2010;22:1361–1363. doi:10.1002/adma.200902879.
  • Kondo M, Yu YL, Ikeda T. How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid-crystalline elastomers? Angew Chem Int Ed. 2006;45:1378–1382. doi:10.1002/(ISSN)1521-3773.
  • Kondo M, Mamiya J, Kinoshita M, et al. Photoinduced deformation behavior of crosslinked azobenzene liquid-crystalline polymer films with unimorph and bimorph structure. Mol Cryst Liq Cryst. 2007;478:1001–1013. doi:10.1080/15421400701680952.
  • Harris KD, Cuypers R, Scheibe P, et al. Large amplitude light-induced motion in high elastic modulus polymer actuators. J Mater Chem. 2005;15:5043–5048. doi:10.1039/b512655j.
  • Yu YL, Maeda T, Mamiya J, et al. Photomechanical effects of ferroelectric liquid-crystalline elastomers containing azobenzene chromophores. Angew Chem Int Edit. 2007;46:881–883. doi:10.1002/anie.200603053.
  • Wang W, Sun XM, Wu W, et al. Photoinduced deformation of crosslinked liquid-crystalline polymer film oriented by a highly aligned carbon nanotube sheet. Angew Chem Int Edit. 2012;51:4644–4647. doi:10.1002/anie.201200723.
  • Yu YL, Nakano M, Shishido A, et al. Effect of cross-linking density on photoinduced bending behavior of oriented liquid-crystalline network films containing azobenzene. Chem Mater. 2004;16:1637–1643. doi:10.1021/cm035092g.
  • Shimamura A, Priimagi A, Mamiya J, et al. Simultaneous analysis of optical and mechanical properties of cross-linked azobenzene-containing liquid-crystalline polymer films. Acs Appl Mater Inter. 2011;3:4190–4196. doi:10.1021/am200621j.
  • Mamiya J-I, Yoshitake A, Kondo M, et al. Is chemical crosslinking necessary for the photoinduced bending of polymer films? J Mater Chem. 2008;18:63–65. doi:10.1039/B715855F.
  • Fang LJ, Zhang HT, Li ZD, et al. Synthesis of reactive azobenzene main-chain liquid crystalline polymers via michael addition polymerization and photomechanical effects of their supramolecular hydrogen-bonded fibers. Macromolecules. 2013;46:7650–7660. doi:10.1021/ma401655k.
  • Chen B-Q, Kameyama A, Nishikubo T. New combined liquid crystalline polymers from polyaddition of biphenol diglycidyl ether and trimeric esters. Macromolecules. 1999;32:6485–6492. doi:10.1021/ma990348i.
  • Lee W-K, Kim K-N, Achard MF, et al. Dimesogenic compounds consisting of cholesterol and fluorinated azobenzene moieties: dependence of liquid crystal properties on spacer length and fluorination of the terminal tail. J Mater Chem. 2006;16:2289–2297. doi:10.1039/b516141j.
  • Zhang YY, Xu JX, Cheng FT, et al. Photoinduced bending behavior of crosslinked liquid-crystalline polymer films with a long spacer. J Mater Chem. 2010;20:7123–7130. doi:10.1039/c0jm00510j.
  • Priimagi A, Shimamura A, Kondo M, et al. Location of the azobenzene moieties within the cross-linked liquid-crystalline polymers can dictate the direction of photoinduced bending. Acs Macro Lett. 2012;1:96–99. doi:10.1021/mz200056w.
  • Yamada M, Kondo M, Mamiya J-I, et al. Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed. 2008;47:4986–4988. doi:10.1002/anie.v47:27.
  • Yamada M, Kondo M, Miyasato R, et al. Photomobile polymer materials-various three-dimensional movements. J Mater Chem. 2009;19:60–62. doi:10.1039/B815289F.
  • Chen ML, Xing X, Liu Z, et al. Photodeformable polymer material: towards light-driven micropump applications. Appl Phys A-Mater. 2010;100:39–43. doi:10.1007/s00339-010-5853-3.
  • Chen ML, Huang HT, Zhu YT, et al. Photodeformable CLCP material: study on photo-activated microvalve applications. Appl Phys A-Mater. 2011;102:667–672. doi:10.1007/s00339-010-6103-4.
  • Van Oosten CL, Bastiaansen CWM, Broer DJ. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater. 2009;8:677–682. doi:10.1038/nmat2487.
  • Yang ZQ, Herd GA, Clarke SM, et al. Thermal and UV shape shifting of surface topography. J Am Chem Soc. 2006;128:1074–1075. doi:10.1021/ja056866s.
  • Li C, Cheng FT, Lv J-A, et al. Light-controlled quick switch of adhesion on a micro-arrayed liquid crystal polymer superhydrophobic film. Soft Matter. 2012;8:3730–3733. doi:10.1039/c2sm07471k.
  • Yan Z, Ji XM, Wu W, et al. Light-switchable behavior of a microarray of azobenzene liquid crystal polymer induced by photodeformation. Macromol Rapid Comm. 2012;33:1362–1367. doi:10.1002/marc.201200303.
  • Zhao JQ, Liu YY, Yu YL. Dual-responsive inverse opal films based on a crosslinked liquid crystal polymer containing azobenzene. J Mater Chem C. 2014;2:10262–10267. doi:10.1039/C4TC01825G.
  • Liu DQ, Bastiaansen CWM, Den Toonder JMJ, et al. Photo-switchable surface topologies in chiral nematic coatings. Angew Chem Int Ed. 2012;51:892–896. doi:10.1002/anie.201105101.
  • Liu DQ, Broer DJ. Self-assembled dynamic 3D fingerprints in liquid-crystal coatings towards controllable friction and adhesion. Angew Chem Int Ed. 2014;53:4542–4546. doi:10.1002/anie.201400370.
  • Liu DQ, Liu L, Onck PR, et al. Reverse switching of surface roughness in a self-organized polydomain liquid crystal coating. Proc Natl Acad Sci U S A. 2015;112:3880–3885. doi:10.1073/pnas.1419312112.
  • Liu DQ, Broer DJ. New insights into photoactivated volume generation boost surface morphing in liquid crystal coatings. Nat Commun. 2015;6:8334. doi:10.1038/ncomms9334.
  • Li CS, Liu Y, Huang XZ, et al. Direct sun-driven artificial heliotropism for solar energy harvesting based on a photo-thermomechanical liquid-crystal elastomer nanocomposite. Adv Funct Mater. 2012;22:5166–5174. doi:10.1002/adfm.201202038.
  • Liu XY, Wei RB, Hoang PT, et al. Reversible and rapid laser actuation of liquid crystalline elastomer micropillars with inclusion of gold nanoparticles. Adv Funct Mater. 2015;25:3022–3032. doi:10.1002/adfm.201500443.
  • Cheng FT, Zhang YY, Yin RY, et al. Visible light induced bending and unbending behavior of crosslinked liquid-crystalline polymer films containing azotolane moieties. J Mater Chem. 2010;20:4888–4896. doi:10.1039/b926903g.
  • Yin RY, Xu WX, Kondo M, et al. Can sunlight drive the photoinduced bending of polymer films? J Mater Chem. 2009;19:3141–3143. doi:10.1039/b904973h.
  • Cheng FT, Yin RY, Zhang YY, et al. Fully plastic microrobots which manipulate objects using only visible light. Soft Matter. 2010;6:3447–3449. doi:10.1039/c0sm00012d.
  • Zhan Y, Zhao J, Liu W, et al. Biomimetic submicroarrayed cross-linked liquid crystal polymer films with different wettability via colloidal lithography. Acs Appl Mater Inter. 2015;7:25522–25528. doi:10.1021/acsami.5b09013.
  • Chen ZG, Chen HL, Hu H, et al. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J Am Chem Soc. 2008;130:3023–3029. doi:10.1021/ja076151k.
  • Wu W, Yao LM, Yang TS, et al. NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. J Am Chem Soc. 2011;133:15810–15813. doi:10.1021/ja2043276.
  • Jiang Z, Xu M, Li FY, et al. Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet-triplet annihilation. J Am Chem Soc. 2013;135:16446–16453. doi:10.1021/ja406020r.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.