1,156
Views
53
CrossRef citations to date
0
Altmetric
Invited Article

Liquid-crystal-droplet optical microcavities

Pages 1937-1950 | Received 01 May 2016, Published online: 15 Aug 2016

References

  • Muševič I, Škarabot M, Tkalec U, et al. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science. American Association for the Advancement of Science; 2006;313:954–958. doi:10.1126/science.1129660.
  • Smalyukh II, Lansac Y, Clark NA, et al. Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids. Nat Mater [Internet]. Nature Publishing Group; 2010 Feb;9:139–145. 10.1038/nmat2592.
  • Poulin P, Stark H, Lubensky TC, et al. Novel colloidal interactions in anisotropic fluids. Science. American Association for the Advancement of Science; 1997;275:1770–1773. doi:10.1126/science.275.5307.1770.
  • Tkalec U, Ravnik M, Čopar S, et al. Reconfigurable knots and links in chiral nematic colloids. Science [Internet]. American Association for the Advancement of Science; 2011;333:62–65. 10.1126/science.1205705
  • Ravnik M, Škarabot M, Žumer S, et al. Entangled nematic colloidal dimers and wires. Phys Rev Lett. APS; 2007;99:247801. doi:10.1103/PhysRevLett.99.247801.
  • Humar M, Škarabot M, Ravnik M, et al. Electrically tunable diffraction of light from 2D nematic colloidal crystals. Eur Phys J E. Springer-Verlag; 2008;27:73–79. doi:10.1140/epje/i2008-10353-0.
  • Nych A, Ognysta U, Škarabot M, et al. Assembly and control of 3D nematic dipolar colloidal crystals. Nat Commun. Nature Publishing Group; 2013;4:1489. doi:10.1038/ncomms2486.
  • Coles H, Morris S. Liquid-crystal lasers. Nat Photonics [Internet]. Nature Publishing Group; 2010;4:676–685. http://www.nature.com/doifinder/10.1038/nphoton.2010.184
  • Drzaic PS. Liquid crystal dispersions. Singapore: World Scientific; 1995.
  • Doane JW, Vaz NA, B-G W, et al. Field controlled light scattering from nematic microdroplets. Appl Phys Lett. . AIP Publishing; 1986;48:269–271. doi:10.1063/1.96577.
  • Hands PJW, Gardiner DJ, Morris SM, et al. Band-edge and random lasing in paintable liquid crystal emulsions. Appl Phys Lett. 2011;98:3–5. doi:10.1063/1.3574915.
  • Lee C-R, Lin J-D, Huang B-Y, et al. All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye. Opt Express. Optical Society of America; 2010;18:25896–25905. doi:10.1364/OE.18.025896.
  • Nagai Y, Fujimura R, Kajikawa K. Coherent random laser fluid of nematic liquid crystal emulsions. Jpn J Appl Phys [Internet]. 2014;53:01AE05. 10.7567/JJAP.53.01AE05
  • Lopez-Leon T, Fernandez-Nieves A. Drops and shells of liquid crystal. Colloid Polym Sci. Springer; 2011;289:345–359. doi:10.1007/s00396-010-2367-7.
  • Seč D, Čopar S, Žumer S. Topological zoo of free-standing knots in confined chiral nematic fluids. Nat Commun. 2014;5:3057. doi:10.1038/ncomms4057.
  • Gorodetsky ML, Fomin AE. Geometrical theory of whispering-gallery modes. Sel Top Quantum Electron. IEEE J. 2006;12:33–39. doi:10.1109/JSTQE.2005.862954.
  • Novotny L, Hecht B. Principles of nano-optics. Cambridge: Cambridge University Press; 2012.
  • De Gennes PG, Prost J. The physics of liquid crystals. Oxford: Clarendon Press; 1993.
  • Vahala KJ. Optical microcavities. Nature. 2003;424:839–846. doi:10.1038/nature01939.
  • Jampani VSR, Humar M, Muševič I. Resonant transport of light from planar polymer waveguide into liquid-crystal microcavity. Opt Express. Optical Society of America; 2013;21:20506–20516. doi:10.1364/OE.21.020506.
  • Humar M, Hyun Yun S. Intracellular microlasers. Nat Photonics [Internet]. 2015;9:572–576. Available from: http://www.nature.com/doifinder/10.1038/nphoton.2015.129
  • Humar M, Ravnik M, Pajk S, et al. Electrically tunable liquid crystal optical microresonators. Nat Photonics. 2009;595–600. doi:10.1038/nphoton.2009.170.
  • Humar M, Muševič I. Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets. Opt Express. Optical Society of America; 2011;19:19836–19844. doi:10.1364/OE.19.019836.
  • Wang T-J, Chu C-H, Lin C-Y. Electro-optically tunable microring resonators on lithium niobate. Opt Lett. 2007;32:2777–2779. doi:10.1364/OL.32.002777.
  • Muševič I, Skarabot M, Humar M. Direct and inverted nematic dispersions for soft matter photonics. J Phys Condens Matter. 2011;23:284112. doi:10.1088/0953-8984/23/28/284112.
  • Maune B, Lawson R, Gunn G, et al. Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers. Appl Phys Lett. 2003;83:4689–4691. doi:10.1063/1.1630370.
  • Bondar VG, Lavrentovich OD, Pergamenshchik VM, Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field. Sov Phys. JETP. 1992;74:60–67.
  • Piegdon KA, Matthias H, Meier C, et al. Tunable optical properties of photonic crystals and semiconductor microdisks using liquid crystals. Proc SPIE. 2007;1:1–9.
  • Kiraz A, Karadaǧ Y, Coskun AF. Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting. Appl Phys Lett. 2008;92:8–10. doi:10.1063/1.2927373.
  • Kumar TA, Mohiddon MA, Dutta N, et al. Detection of phase transitions from the study of whispering gallery mode resonance in liquid crystal droplets. Appl Phys Lett. AIP Publishing; 2015;106:51101. doi:10.1063/1.4906615.
  • Peddireddy K, Jampani VSR, Thutupalli S, et al. Lasing and waveguiding in smectic A liquid crystal optical fibers. Opt Express [Internet]. 2013;21:30233–30242. 10.1364/OE.21.030233
  • Muševič I, Humar M. Tunable liquid crystal optical microcavities. Spie Opto. 2011;7955:795509.
  • Dong CH, He L, Xiao YF, et al. Fabrication of high- Q polydimethylsiloxane optical microspheres for thermal sensing. Appl Phys Lett. 2009;94:3–5. doi:10.1063/1.3152791.
  • Ma Q, Rossmann T, Guo Z. Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement. Meas Sci Technol. IOP Publishing; 2010;21:25310. doi:10.1088/0957-0233/21/2/025310.
  • Vollmer F, Arnold S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods. 2008;5:591–596. doi:10.1038/nmeth.1221.
  • Armani AM, Kulkarni RP, Fraser SE, et al. Label-free, single-molecule detection with optical microcavities. Science [Internet]. 2007;317:783–787. 10.1126/science.1145002
  • Brake JM, Daschner MK, Luk -Y-Y, et al. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science. American Association for the Advancement of Science; 2003;302:2094–2097. doi:10.1126/science.1091749.
  • Dubtsov AV, Pasechnik SV, Shmeliova DV, et al. Light and phospholipid driven structural transitions in nematic microdroplets. Appl Phys Lett. AIP Publishing; 2014;105:151606. doi:10.1063/1.4898335.
  • Lin I, Miller DS, Bertics PJ, et al. Endotoxin-induced structural transformations in liquid crystalline droplets. Science [Internet]. 2011;332:1297–1300. 10.1126/science.1195639
  • Lee K, Gupta KC, Park S-Y, et al. Anti-IgG-anchored liquid crystal microdroplets for label free detection of IgG. J Mater Chem B. Royal Society of Chemistry; 2016;4:704–715. doi:10.1039/C5TB02131F.
  • Sivakumar S, Wark KL, Gupta JK, et al. Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses. Adv Funct Mater. 2009;19:2260–2265. doi:10.1002/adfm.v19:14.
  • Yoon SH, Gupta KC, Borah JS, et al. Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells. Langmuir. ACS Publications; 2014;30:10668–10677. doi:10.1021/la502032k.
  • Takezoe H. Liquid crystal lasers. In: Liquid crystals beyond displays: chemistry, physics, and applications. Hoboken, NJ: John Wiley & Sons; 2012.
  • Blanco A, Chomski E, Grabtchak S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nat [Internet]. 2000 May;405:437–440. doi:10.1038/35013024.
  • Tandaechanurat A, Ishida S, Guimard D, et al. Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap. Nat Photonics. Nature Publishing Group; 2011;5:91–94. doi:10.1038/nphoton.2010.286.
  • Cao W, Muñoz A, Palffy-Muhoray P, et al. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nat Mater. 2002;1:111–113. doi:10.1038/nmat727.
  • Scheuer J, Green WMJ, DeRose G, et al. Low-threshold two-dimensional annular Bragg lasers. Opt Lett. 2004;29:2641–2643. doi:10.1364/OL.29.002641.
  • Gourevich I, Field LM, Wei Z, et al. Polymer multilayer particles: a route to spherical dielectric resonators. Macromolecules. 2006;39:1449–1454. doi:10.1021/ma052167o.
  • Zhang K, Gao L, Chen Y, et al. Onion-like microspheres with tricomponent from gelable triblock copolymers. J Colloid Interface Sci [Internet]. Elsevier Inc.; 2010; 346:48–53. doi:10.1016/j.jcis.2010.02.039.
  • Humar M, Muševič I. 3D microlasers from self-assembled cholesteric liquid-crystal microdroplets. Opt Express. 2010;18:26995–27003. doi:10.1364/OE.18.026995.
  • Bezic J, Žumer S. Structures of the cholesteric liquid-crystal droplets with parallel surface anchoring. Liq Cryst. 1992;11:593–619. doi:10.1080/02678299208029013.
  • Seč D, Porenta T, Ravnik M, et al. Geometrical frustration of chiral ordering in cholesteric droplets. Soft Matter. Royal Society of Chemistry; 2012;8:11982–11988. doi:10.1039/c2sm27048j.
  • Sonoyama K, Takanishi Y, Ishikawa K, et al. Position-sensitive cholesteric liquid crystal dye laser covering a full visible range. Japanese J Appl Physics, Part 2 Lett. 2007;46:874–876. doi:10.1143/JJAP.46.L874.
  • Manabe T, Sonoyama K, Takanishi Y, et al. Toward practical application of cholesteric liquid crystals to tunable lasers. J Mater Chem [Internet]. 2008;18:3040–3043. doi:10.1039/B802461H.
  • Morris SM, Ford AD, Coles HJ. Removing the discontinuous shifts in emission wavelength of a chiral nematic liquid crystal laser. J Appl Phys [Internet]. 2009;106. Available from: http://scitation.aip.org/content/aip/journal/jap/106/2/10.1063/1.3177251
  • Cipparrone G, Mazzulla A, Pane A, et al. Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device. Adv Mater. 2011;23:5773–5778. doi:10.1002/adma.v23.48.
  • Hamlington BD, Steinhaus B, Feng JJ, et al. Liquid crystal droplet production in a microfluidic device. Liq Cryst. 2007;34:861–870. doi:10.1080/02678290601171485.
  • Belloul M, Bartolo J-F, Ziraoui B, et al. High-throughput formation and control of monodisperse liquid crystals droplets driven by an alternating current electric field in a microfluidic device. Appl Phys Lett. AIP Publishing; 2013;103:33112. doi:10.1063/1.4813880.
  • Priest C, Quinn A, Postma A, et al. Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis. Lab Chip. Royal Society of Chemistry; 2008;8:2182–2187. doi:10.1039/b808826h.
  • Chen L, Li Y, Fan J, et al. photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switch. Adv Opt Mater. 2014;2:845–848. doi:10.1002/adom.201400166.
  • Fernández-Nieves A, Vitelli V, Utada AS, et al. Novel defect structures in nematic liquid crystal shells. Phys Rev Lett. APS; 2007;99:157801. doi:10.1103/PhysRevLett.99.157801.
  • Ohm C, Serra C, Zentel R. A continuous flow synthesis of micrometer-sized actuators from liquid crystalline elastomers. Adv Mater. Wiley Online Library; 2009;21:4859–4862. doi:10.1002/adma.200901522.
  • Sun Y, Evans JS, Lee T, et al. Optical manipulation of shape-morphing elastomeric liquid crystal microparticles doped with gold nanocrystals. Appl Phys Lett. AIP Publishing; 2012;100:241901. doi:10.1063/1.4729143.
  • Peddireddy K, Kumar P, Thutupalli S, et al. Myelin structures formed by thermotropic smectic liquid crystals. Langmuir [Internet]. 2013;29:15682–15688. doi:10.1021/la4038588.
  • Iwai Y, Kaji H, Uchida Y, et al. Chemiluminescence emission in cholesteric liquid crystalline core-shell microcapsules. J Mater Chem C [Internet]. The Royal Society of Chemistry; 2014; 2:4904–4908. doi:10.1039/C4TC00699B.
  • Muševič I, Peng H, Nikkhou M, et al. Self-assembled liquid-crystal microlasers, microresonators, and microfibres. Spie Lase. 2014;8960:896016.
  • Lin J-D, Hsieh M-H, Wei G-J, et al. Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant. Opt Express [Internet]. OSA; 2013 Jul;21:15765–15776. 10.1364/OE.21.015765.
  • Cattaneo L, Savoini M, Muševič I, et al. Ultrafast all-optical response of a nematic liquid crystal. Opt Express [Internet]. OSA; 2015 Jun;23:14010–14017. 10.1364/OE.23.014010.
  • Vitek M, Muševič I. Nanosecond control and optical pulse shaping by stimulated emission depletion in a liquid crystal. Opt Express [Internet]. OSA; 2015 Jun;23:16921–16932. 10.1364/OE.23.016921.
  • Shibaev PV, Crooker B, Manevich M, et al. Mechanically tunable microlasers based on highly viscous chiral liquid crystals. Appl Phys Lett [Internet]. 2011;99. Available from: http://scitation.aip.org/content/aip/journal/apl/99/23/10.1063/1.3665943
  • Cuennet JG, Vasdekis AE, De Sio L, et al. Optofluidic modulator based on peristaltic nematogen microflows. Nat Photonics. Nature Publishing Group; 2011;5:234–238. doi:10.1038/nphoton.2011.18.
  • Geng Y, Sec D, Almeida PL, et al. Liquid crystal necklaces: cholesteric drops threaded by thin cellulose fibres. Soft Matter [Internet]. The Royal Society of Chemistry; 2013; 9:7928–7933. doi:10.1039/C3SM50900A.
  • Poon JKS, Zhu L, DeRose GA, et al. Polymer microring coupled-resonator optical waveguides. Light Technol J. IEEE; 2006;24:1843–1849. doi:10.1109/JLT.2006.870971.
  • Nikkhou M, Škarabot M, Čopar S, et al. Light-controlled topological charge in a nematic liquid crystal. Nat Phys. Nature Publishing Group; 2015;11:183–187. doi:10.1038/nphys3194.
  • Nikkhou M, Škarabot M, Muševič I. Topological binding and elastic interactions of microspheres and fibres in a nematic liquid crystal. Eur Phys J E. Springer; 2015;38:1–15. doi:10.1140/epje/i2015-15023-6.
  • Beltran-Gracia E, Parri OL. A new twist on cholesteric films by using reactive mesogen particles. J Mater Chem C. Royal Society of Chemistry; 2015;3:11335–11340. doi:10.1039/C5TC02920A.
  • Noh J, Liang H-L, Drevensek-Olenik I, et al. Tuneable multicoloured patterns from photonic cross-communication between cholesteric liquid crystal droplets. J Mater Chem C [Internet]. The Royal Society of Chemistry; 2014; 2:806–810. doi:10.1039/C3TC32055C.
  • Fan J, Li Y, Bisoyi HK, et al. Light-directing omnidirectional circularly polarized reflection from liquid-crystal droplets. Angew Chemie [Internet]. WILEY-VCH Verlag; 2015; 127:2188–2192. doi:10.1002/ange.201410788.
  • Donato MG, Hernandez J, Mazzulla A, et al. Polarization-dependent optomechanics mediated by chiral microresonators. Nat Commun. Nature Publishing Group; 2014;5. doi:10.1038/ncomms4656.
  • Tkachenko G, Brasselet E. Helicity-dependent three-dimensional optical trapping of chiral microparticles. Nat Commun. Nature Publishing Group; 2014;5. doi:10.1038/ncomms5491.
  • Yang Y, Brimicombe PD, Roberts NW, et al. Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap. Opt Express [Internet]. OSA; 2008 May;16:6877–6882. 10.1364/OE.16.006877.
  • Woltman SJ, Jay GD, Crawford GP. Liquid-crystal materials find a new order in biomedical applications. Nat Mater. Nature Publishing Group; 2007;6:929–938. doi:10.1038/nmat2010.
  • Humar M, Kwok SJJ, Choi M, et al. Towards biomaterial-based implantable photonic devices. Nanophotonics. De Gruyter; 2016;5:60–80. doi:10.1515/nanoph-2016-0003.
  • Ta VD, Chen R, Nguyen DM, et al. Application of self-assembled hemispherical microlasers as gas sensors. Appl Phys Lett [Internet]. 2013;102. Available from: http://scitation.aip.org/content/aip/journal/apl/102/3/10.1063/1.4788751
  • Hands PJW, Gardiner DJ, Morris SM, et al. Band-edge and random lasing in paintable liquid crystal emulsions. Appl Phys Lett. AIP Publishing; 2011;98:141102. doi:10.1063/1.3574915.
  • Gardiner DJ, Morris SM, Hands PJW, et al. Paintable band-edge liquid crystal lasers. Opt Express. 2011;19:2432–2439.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.