1,035
Views
20
CrossRef citations to date
0
Altmetric
Invited Article

Dynamic self-assembly of nanoparticles using thermotropic liquid crystals

, , , &
Pages 2391-2409 | Received 09 May 2016, Published online: 06 Sep 2016

References

  • Nie Z, Petukhova A, Kumacheva E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol. 2010;5:15–25. doi:10.1038/nnano.2009.453.
  • Guerrero-Martínez A, Grzelczak M, Liz-Marzán LM. Molecular thinking for nanoplasmonic design. ACS Nano. 2012;6:3655–3662. doi:10.1021/nn301390s.
  • Silva A, Monticone F, Castaldi G, et al. Performing mathematical operations with metamaterials. Science. 2014;343:160–163. doi:10.1126/science.1242818.
  • Urban JJ. Prospects for thermoelectricity in quantum dot hybrid arrays. Nat Nanotechnol. 2015;10:997–1001. doi:10.1038/nnano.2015.289.
  • Ni X, Wong ZJ, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light. Science. 2015;349:1310–1314. doi:10.1126/science.aac9411.
  • Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13:139–150. doi:10.1038/nmat3839.
  • Zheludev NI. Obtaining optical properties on demand. Science. 2015;348:973–974. doi:10.1126/science.aac4360.
  • Sajanlal PR, Sreeprasad TS, Samal AK, et al. Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Rev. 2011;2:1–62.
  • Kim Y, Macfarlane RJ, Jones MR, et al. Transmutable nanoparticles with reconfigurable surface ligands. Science. 2016;351:579–582. doi:10.1126/science.aad2212.
  • Sherman ZM, Swan JW. Dynamic, directed self-assembly of nanoparticles via toggled interactions. ACS Nano. 2016;10:5260–5271. doi:10.1021/acsnano.6b01050.
  • Chen Y, Shi Y. Dynamic self assembly of confined active nanoparticles. Chem Phys Lett. 2013;557:76–79. doi:10.1016/j.cplett.2012.11.073.
  • Wang L, Xu L, Kuang H, et al. Dynamic nanoparticle assemblies. Acc ChemRes. 2012;45:1916–1926. doi:10.1021/ar200305f.
  • Ocier CR, Smilgies D-M, Robinson RD, et al. Reconfigurable nanorod films: an in situ study of the relationship between the tunable nanorod orientation and the optical properties of their self-assembled thin films. Chem Mater. 2015;27:2659–2665. doi:10.1021/acs.chemmater.5b00503.
  • Li B, Smilgies D, Price AD, et al. Poly(N -isopropylacrylamide) surfactant-functionalized responsive silver nanoparticles and superlattices. ACS Nano. 2014;8:4799–4804. doi:10.1021/nn500690h.
  • González-Rubio G, Guerrero-Martínez A, Liz-Marzán LM. Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Acc Chem Res. 2016;49:678–686. doi:10.1021/acs.accounts.6b00041.
  • Yu Y, Goodfellow BW, Rasch MR, et al. The role of halides in the ordered structure transitions of heated gold nanocrystal superlattices. Langmuir. 2015;31:6924–6932. doi:10.1021/acs.langmuir.5b01498.
  • Wei J, Schaeffer N, Pileni M-P. Solvent-mediated crystallization of nanocrystal 3D assemblies of silver nanocrystals: Unexpected superlattice ripening. Chem Mater. 2016;28:293–302. doi:10.1021/acs.chemmater.5b04120.
  • Goodfellow BW, Rasch MR, Hessel CM, et al. Ordered structure rearrangements in heated gold nanocrystal superlattices. Nano Lett. 2013;13:5710–5714. doi:10.1021/nl403458q.
  • Saliba S, Mingotaud C, Kahn ML, et al. Liquid crystalline thermotropic and lyotropic nanohybrids. Nanoscale. 2013;5:6641–6661. doi:10.1039/c3nr01175e.
  • Lewandowski W, Łojewska T, Szustakiewicz P, et al. Reversible switching of structural and plasmonic properties of liquid-crystalline gold nanoparticle assemblies. Nanoscale. 2016;8:2656–2663. doi:10.1039/C5NR08406G.
  • Lewandowski W, Wójcik M, Górecka E. Metal nanoparticles with liquid-crystalline ligands: controlling nanoparticle superlattice structure and properties. ChemPhysChem. 2014;15:1283–1295. doi:10.1002/cphc.201301194.
  • Hegmann T, Qi H, Marx VM. Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications. J Inorg Organomet Polym Mater. 2007;17:483–508. doi:10.1007/s10904-007-9140-5.
  • Goodby JW, Saez IM, Cowling SJ, et al. Transmission and amplification of information and properties in nanostructured liquid crystals. Angew Chem. 2008;47:2754–2787. doi:10.1002/anie.200701111.
  • Qi H, Hegmann T. Liquid crystal–gold nanoparticle composites. Liq Cryst Today. 2011;20:102–114. doi:10.1080/1358314X.2011.610133.
  • Bisoyi HK, Kumar S. Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem Soc Rev. 2011;40:306–319. doi:10.1039/B901793N.
  • Stamatoiu O, Mirzaei J, Feng X, et al. Nanoparticles in liquid crystals and liquid crystalline nanoparticles. Top Curr Chem. 2011;318:331–393.
  • Nealon GL, Greget R, Dominguez C, et al. Liquid-crystalline nanoparticles: hybrid design and mesophase structures. Beilstein J Org Chem. 2012;8:349–370. doi:10.3762/bjoc.8.39.
  • Blanc C, Coursault D, Lacaze E. Ordering nano- and microparticles assemblies with liquid crystals. Liq Cryst Rev. 2013;1:83–109. doi:10.1080/21680396.2013.818515.
  • Li Q. Nanoscience with liquid crystals: from self-organized nanostructures to applications. Cham (Switzerland): Springer International Publishing; 2014.
  • Choudhary A, Singh G, Biradar AM. Advances in gold nanoparticle-liquid crystal composites. Nanoscale. 2014;6:7743–7756. doi:10.1039/c4nr01325e.
  • Shivakumar U, Mirzaei J, Feng X, et al. Nanoparticles: complex and multifaceted additives for liquid crystals. Liq Cryst. 2011;38:1495–1514. doi:10.1080/02678292.2011.605477.
  • Kumar S. Nanoparticles in the supramolecular order of discotic liquid crystals. Liq Cryst. 2014;41:353–367. doi:10.1080/02678292.2013.824122.
  • Wang L, Gutierrez-Cuevas KG, Bisoyi HK, et al. NIR light-directing self-organized 3D photonic superstructures loaded with anisotropic plasmonic hybrid nanorods. Chem Commun. 2015;51:15039–15042. doi:10.1039/C5CC06146F.
  • Constantin D, Davidson P. Lamellar Lα mesophases doped with inorganic nanoparticles. ChemPhysChem. 2014;15:1270–1282. doi:10.1002/cphc.201301187.
  • Kossyrev PA, Yin A, Cloutier SG, et al. Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. Nano Lett. 2005;5:1978–1981. doi:10.1021/nl0513535.
  • Chu KC, Chao CY, Chen YF, et al. Electrically controlled surface plasmon resonance frequency of gold nanorods. Appl Phys Lett. 2006;89:2012–2015. doi:10.1063/1.2335812.
  • Koenig GM, Meli M-V, Park J-S, et al. Coupling of the plasmon resonances of chemically functionalized gold nanoparticles to local order in thermotropic liquid crystals. Chem Mater. 2007;19:1053–1061. doi:10.1021/cm062438p.
  • Nych A, Ognysta U, Škarabot M, et al. Assembly and control of 3D nematic dipolar colloidal crystals. Nat Commun. 2013;4:1489. doi:10.1038/ncomms2486.
  • Lenart VM, Turchiello RF, Gomez SL. Probing the Ire–Nc–I phase transitions in a lyotropic liquid crystal by the surface plasmon resonance of embedded gold nanoparticles. Liq Cryst. 2016;43:1215–1220. doi:10.1080/02678292.2016.1162859.
  • Comin A, Manna L. New materials for tunable plasmonic colloidal nanocrystals. Chem Soc Rev. 2014;43:3957–3975. doi:10.1039/c3cs60265f.
  • Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat Photonics. 2010;4:83–91. doi:10.1038/nphoton.2009.282.
  • Nurmikko A. What future for quantum dot-based light emitters? NatNanotechnol. 2015;10:1001–1004.
  • Kovalenko MV. Opportunities and challenges for quantum dot photovoltaics. Nat Nanotechnol. 2015;10:994–997. doi:10.1038/nnano.2015.284.
  • Li X, Zhang F, Zhao D. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem Soc Rev. 2015;44:1346–1378. doi:10.1039/C4CS00163J.
  • Murphy CJ, Sau TK, Gole AM, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem. 2005;109:13857–13870. doi:10.1021/jp0516846.
  • Abécassis B, Tessier MD, Davidson P, et al. Self-assembly of CdSe nanoplatelets into giant micrometer-scale needles emitting polarized light. Nano Lett. 2014;14:710–715. doi:10.1021/nl4039746.
  • Tao A, Sinsermsuksakul P, Yang P. Tunable plasmonic lattices of silver nanocrystals. Nat Nanotechnol. 2007;2:435–440. doi:10.1038/nnano.2007.189.
  • Akselrod GM, Prins F, Poulikakos LV, et al. Subdiffusive exciton transport in quantum dot solids. Nano Lett. 2014;14:3556–3562. doi:10.1021/nl501190s.
  • Park W, Lu D, Ahn S. Plasmon enhancement of luminescence upconversion. Chem Soc Rev. 2015;44:2940–2962. doi:10.1039/C5CS00050E.
  • Yu Y, Jain A, Guillaussier A, et al. Nanocrystal superlattices that exhibit improved order on heating: an example of inverse melting? Faraday Discuss. 2015;181:181–192. doi:10.1039/C5FD00006H.
  • Sidhaye DS, Prasad BLV. Melting characteristics of superlattices of alkanethiol-capped gold nanoparticles: the “Excluded” story of excess thiol. Chem Mater. 2010;22:1680–1685. doi:10.1021/cm9031607.
  • Sidhaye DS, Prasad BLV. Many manifestations of digestive ripening: monodispersity, superlattices and nanomachining. New J Chem. 2011;35:755–763. doi:10.1039/C0NJ00359J.
  • Nayek P, Li G. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device. Sci Rep. 2015;5:10845. doi:10.1038/srep10845.
  • Joshi T, Kumar A, Prakash J, et al. Low power operation of ferroelectric liquid crystal system dispersed with zinc oxide nanoparticles. Appl Phys Lett. 2010;96:253109. doi:10.1063/1.3455325.
  • Blach J-F, Saitzek S, Legrand C, et al. BaTiO 3 ferroelectric nanoparticles dispersed in 5CB nematic liquid crystal: synthesis and electro-optical characterization. J Appl Phys. 2010;107:074102. doi:10.1063/1.3369544.
  • Gharbi MA, Manet S, Lhermitte J, et al. Reversible nanoparticle cubic lattices in blue phase liquid crystals. ACS Nano. 2016;10:3410–3415. doi:10.1021/acsnano.5b07379.
  • Peroukidis SD, Yannopapas V, Vanakaras AG, et al. Plasmonic response of ordered arrays of gold nanorods immersed within a nematic liquid crystal. Liq Cryst. 2014;41:1430–1435. doi:10.1080/02678292.2014.923538.
  • Mundoor H, Senyuk B, Smalyukh II. Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions. Science. 2016;352:69–73. doi:10.1126/science.aaf0801.
  • Liu Q, Cui Y, Gardner D, et al. Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. Nano Lett. 2010;10:1347–1353. doi:10.1021/nl9042104.
  • Liu Q, Tang J, Zhang Y, et al. Shape-dependent dispersion and alignment of nonaggregating plasmonic gold nanoparticles in lyotropic and thermotropic liquid crystals. Phys Rev E. 2014;89:052505. doi:10.1103/PhysRevE.89.052505.
  • Liu Q, Yuan Y, Smalyukh II. Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles. Nano Lett. 2014;14:4071–4077. doi:10.1021/nl501581y.
  • Mundoor H, Smalyukh II. Mesostructured composite materials with electrically tunable upconverting properties. Small. 2015;11:5572–5580. doi:10.1002/smll.v11.41.
  • Zhang Y, Liu Q, Mundoor H, et al. Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers. ACS Nano. 2015;9:3097–3108. doi:10.1021/nn5074644.
  • Yuan Y, Smalyukh II. Topological nanocolloids with facile electric switching of plasmonic properties. Opt Lett. 2015;40:5630–5633. doi:10.1364/OL.40.005630.
  • Pelliser L, Manceau M, Lethiec C, et al. Alignment of rod-shaped single-photon emitters driven by line defects in liquid crystals. Adv Funct Mater. 2015;25:1719–1726. doi:10.1002/adfm.201403331.
  • Wang N, Evans JS, Liu Q, et al. Electrically controllable self-assembly for radial alignment of gold nanorods in liquid crystal droplets. Opt Mater Express. 2015;5:1065–1070. doi:10.1364/OME.5.001065.
  • Thomas MR, Klein S, Greasty RJ, et al. Nematic director-induced switching of assemblies of hexagonally packed gold nanorods. Adv Mater. 2012;24:4424–4429. doi:10.1002/adma.201201319.
  • Hallett JE, Hayward DW, Bartlett P, et al. A small-angle X-ray scattering study of nanoparticle assembly in an aligned nematic liquid crystal. Liq Cryst. 2014;41:1791–1802.68. doi:10.1080/02678292.2014.950618.
  • Su Z, Yin J, Zhao X. Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption. Sci Rep. 2015;5:16698. doi:10.1038/srep16698.
  • Li Z, Zhu Z, Liu W, et al. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J Am Chem Soc. 2012;134:3322–3325. doi:10.1021/ja209981n.
  • Milette J, Cowling SJ, Toader V, et al. Reversible long range network formation in gold nanoparticle - nematic liquid crystal composites. Soft Matter. 2012;8:173–179. doi:10.1039/C1SM06604H.
  • Coursault D, Grand J, Zappone B, et al. Linear self-assembly of nanoparticles within liquid crystal defect arrays. Adv Mater. 2012;24:1461–1465. doi:10.1002/adma.201103791.
  • Coursault D, Blach J-F, Grand J, et al. Tailoring anisotropic interactions between soft nanospheres using dense arrays of smectic liquid crystal edge dislocations. ACS Nano. 2015;9:11678–11689. doi:10.1021/acsnano.5b02538.
  • Milette J, Relaix S, Lavigne C, et al. Reversible long-range patterning of gold nanoparticles by smectic liquid crystals. Soft Matter. 2012;8:6593–6598. doi:10.1039/c2sm25445j.
  • Lee E, Xia Y, Ferrier RC, et al. Fine golden rings: tunable surface plasmon resonance from assembled nanorods in topological defects of liquid crystals. Adv Mater. 2016;28:2731–2736. doi:10.1002/adma.201506084.
  • Stratford K, Henrich O, Lintuvuori JS, et al. Self-assembly of colloid-cholesteric composites provides a possible route to switchable optical materials. Nat Commun. 2014;5:3954. doi:10.1038/ncomms4954.
  • Ackerman PJ, Mundoor H, Smalyukh II, et al. Plasmon-Exciton interactions probed using spatial coentrapment of nanoparticles by topological singularities. ACS Nano. 2015;9:12392–12400. doi:10.1021/acsnano.5b05715.
  • Ravnik M, Čopar S, Žumer S. Particles with changeable topology in nematic colloids. J Phys Condens Matter. 2015;27:354111. doi:10.1088/0953-8984/27/35/354111.
  • Kanayama N, Tsutsumi O, Kanazawa A, et al. Distinct thermodynamic behaviour of a mesomorphic gold nanoparticle covered with a liquid-crystalline compound. Chem Commun. 2001;2640–2641. 10.1039/b108909a
  • In I, Jun Y-W, Kim YJ, et al. Spontaneous one dimensional arrangement of spherical Au nanoparticles with liquid crystal ligands. Chem Commun. 2005;800–801. 10.1039/b413510e
  • Cseh L, Mehl GH. The design and investigation of room temperature thermotropic nematic gold nanoparticles. J Am Chem Soc. 2006;128:13376–13377. doi:10.1021/ja066099c.
  • Kanie K, Muramatsu A. Organic-inorganic hybrid liquid crystals: thermotropic mesophases formed by hybridization of liquid-crystalline phosphates and monodispersed alpha-Fe2O3 particles. J Am Chem Soc. 2005;127:11578–11579. doi:10.1021/ja054232f.
  • Marx VM, Girgis H, Heiney PA, et al. Bent-core liquid crystal (LC) decorated gold nanoclusters: synthesis, self-assembly, and effects in mixtures with bent-core LC hosts. J Mater Chem. 2008;18:2983–2994. doi:10.1039/b802554a.
  • Frein S, Boudon J, Vonlanthen M, et al. Liquid-crystalline thiol- and disulfide-based dendrimers for the functionalization of gold nanoparticles. preliminary communication. Helv Chim Acta. 2008;91:2321–2337. doi:10.1002/hlca.200890253.
  • Zeng X, Liu F, Fowler AG, et al. 3D ordered gold strings by coating nanoparticles with mesogens. Adv Mater. 2009;21:1746–1750. doi:10.1002/adma.200803403.
  • Buathong S, Ung D, Daou TJ, et al. Thermal, magnetic, and luminescent properties of dendronized ferrite nanoparticles. J Phys Chem. 2009;113:12201–12212.
  • Wojcik M, Lewandowski W, Matraszek J, et al. Liquid-crystalline phases made of gold nanoparticles. Angew Chem. 2009;48:5167–5169. doi:10.1002/anie.200901206.
  • Demortière A, Buathong S, Pichon BP, et al. Nematic-like organization of magnetic mesogen-hybridized nanoparticles. Small. 2010 Jun;6:1341–1346.
  • Draper M, Saez IM, Cowling SJ, et al. Self-assembly and shape morphology of liquid crystalline gold metamaterials. Adv Funct Mater. 2011;21:1260–1278. doi:10.1002/adfm.201001606.
  • Wojcik MM, Gora M, Mieczkowski J, et al. Temperature-controlled liquid crystalline polymorphism of gold nanoparticles. Soft Matter. 2011;7:10561–10564. doi:10.1039/c1sm06436c.
  • Mang X, Zeng X, Tang B, et al. Control of anisotropic self-assembly of gold nanoparticles coated with mesogens. J Mater Chem. 2012;22:11101–11106. doi:10.1039/c2jm16794h.
  • Kanie K, Matsubara M, Zeng X, et al. Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona. J Am Chem Soc. 2012;134:808–811. doi:10.1021/ja2095816.
  • Mischler S, Guerra S, Deschenaux R. Design of liquid-crystalline gold nanoparticles by click chemistry. Chem Commun. 2012;48:2183–2185. doi:10.1039/c2cc17375a.
  • Yu CH, Schubert CP, Welch C, et al. Design, synthesis, and characterization of mesogenic amine-capped nematic gold nanoparticles with surface-enhanced plasmonic resonances. J Am Chem Soc. 2012;134:5076–5079. doi:10.1021/ja300492d.
  • Lewandowski W, Constantin D, Walicka K, et al. Smectic mesophases of functionalized silver and gold nanoparticles with anisotropic plasmonic properties. Chem Commun. 2013;49:7845–7847. doi:10.1039/c3cc43166e.
  • Umadevi S, Feng X, Hegmann T. Large area self-assembly of nematic liquid-crystal-functionalized gold nanorods. Adv Funct Mater. 2013;23:1393–1403. doi:10.1002/adfm.201202727.
  • Lewandowski W, Jatczak K, Pociecha D, et al. Control of gold nanoparticle superlattice properties via mesogenic ligand architecture. Langmuir. 2013;29:3404–3410. doi:10.1021/la3043236.
  • Zep A, Wojcik MM, Lewandowski W, et al. Phototunable liquid-crystalline phases made of nanoparticles. Angew Chem. 2014;53:13725–13728. doi:10.1002/anie.201407497.
  • Feng X, Sosa-Vargas L, Umadevi S, et al. Discotic liquid crystal-functionalized gold nanorods: 2- and 3d self-assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π-π interactions. Adv Funct Mater. 2015;25:1180–1192. doi:10.1002/adfm.201401844.
  • Cseh L, Mang X, Zeng X, et al. Helically twisted chiral arrays of gold nanoparticles coated with a cholesterol mesogen. J Am Chem Soc. 2015;137:12736–12739. doi:10.1021/jacs.5b05059.
  • Jishkariani D, Diroll BT, Cargnello M, et al. Dendron-mediated engineering of interparticle separation and self-assembly in dendronized gold nanoparticles superlattices. J Am Chem Soc. 2015;137:10728–10734. doi:10.1021/jacs.5b06306.
  • Lewandowski W, Fruhnert M, Mieczkowski J, et al. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial. Nat Commun. 2015;6:6590. doi:10.1038/ncomms7590.
  • Chen Y, Wang X. Novel phase-transfer preparation of monodisperse silver and gold nanoparticles at room temperature. Mater Lett. 2008;62:2215–2218. doi:10.1016/j.matlet.2007.11.050.
  • Weidman MC, Smilgies D-M, Tisdale WA. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering. NatMater. 2016;15:775–781. doi:10.1038/nmat4600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.