325
Views
4
CrossRef citations to date
0
Altmetric
Invited Article

Nematic phase transition and texture dynamics

Pages 2300-2319 | Received 16 May 2016, Published online: 23 Nov 2016

References

  • Lee S, Lee S, Kim H. Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching. Appl Phys Lett. 1998;73(20):2881–2883. DOI:10.1063/1.122617
  • Serra F, Buscaglia M, Bellini T. The emergence of memory in liquid crystals. Mater Today. 2011;14(10):488–494. DOI:10.1016/S1369-7021(11)70213-9
  • Ricci M, Mazzeo M, Berardi R, et al. A molecular level simulation of a twisted nematic cell. Faraday Discuss. 2010;144:171–185. DOI:10.1039/B901784D
  • De Gennes P, Prost J. The physics of liquid crystals. 2nd ed. New York: Oxford University Press; 1995.
  • Sonnet A, Kilian A, Hess S. Alignment tensor versus director: description of defects in nematic liquid crystals. Phys Rev E. 1995;52(1):718–722. DOI:10.1103/PhysRevE.52.718
  • Denniston C, Orlandini E, Yeomans J. Lattice boltzmann simulations of liquid crystal hydrodynamics. Phys Rev E. 2001;63(5):056702. DOI:10.1103/PhysRevE.63.056702
  • Stark H, Lubensky T. Poisson-bracket approach to the dynamics of nematic liquid crystals. Phys Rev E. 2003;67(6):061709. DOI:10.1103/PhysRevE.67.061709
  • Ravnik M, Žumer S. Landau–de gennes modelling of nematic liquid crystal colloids. Liq Cryst. 2009;36(10–11):1201–1214. DOI:10.1080/02678290903056095
  • Care C, Cleaver D. Computer simulation of liquid crystals. Rep Prog Phys. 2005;68(11):2665–2700. DOI:10.1088/0034-4885/68/11/R04
  • Zannoni C. Molecular design and computer simulations of novel mesophases. J Mater Chem. 2001;11(11):2637–2646. DOI:10.1039/b103923g
  • Zannoni C. An introduction to the molecular dynamics method and to orientational dynamics in liquid crystals. In: Luckhurst GR, Veracini CA, editors. The molecular dynamics of liquid crystals. New York (NY): Springer; 1994. p. 139–169.
  • Fu F, Abukhdeir N. A topologically-informed hyperstreamline seeding method for alignment tensor fields. IEEE Trans Vis Comput Graph. 2015 Mar;21(3):413–419. DOI:10.1109/TVCG.2014.2363828
  • Hernández S, Moreno-Razo J, Ramrez-Hernández A, et al. Liquid crystal nanodroplets, and the balance between bulk and interfacial interactions. Soft Matter. 2012;8(5):1443–1450. DOI:10.1039/C1SM06425H
  • Moreno-Razo J, Sambriski E, Abbott N, et al. Liquid-crystal-mediated self-assembly at nanodroplet interfaces. Nature. 2012;485(7396):86–89. DOI:10.1038/nature11084
  • Berardi R, Muccioli L, Zannoni C. Field response and switching times in biaxial nematics. J Chem Phys. 2008;128(2):024905. DOI:10.1063/1.2815804
  • Ricci M, Berardi R, Zannoni C. On the field-induced switching of molecular organization in a biaxial nematic cell and its relaxation. J Chem Phys. 2015;143(8):084705. DOI:10.1063/1.4928522
  • Sarman S, Laaksonen A. Evaluation of the viscosities of a liquid crystal model system by shear flow simulation. Chem Phys Lett. 2009;479(1–3):47–51. DOI:10.1016/j.cplett.2009.07.097
  • Sarman S, Laaksonen A. Twist viscosities and flow alignment of biaxial nematic liquid crystal phases of a soft ellipsoid-string fluid studied by molecular dynamics simulation. Phys Chem Chem Phys. 2012;14(34):11999–12013. DOI:10.1039/c2cp41456b
  • Humpert A, Allen MP. Propagating director bend fluctuations in nematic liquid crystals. Phys Rev Lett. 2015;114(2):028301. DOI:10.1103/PhysRevLett.114.028301
  • Humpert A, Allen MP. Elastic constants and dynamics in nematic liquid crystals. Mol Phys. 2015;113(17–18):2680–2692. DOI:10.1080/00268976.2015.1067730
  • Berardi R, Costantini A, Muccioli L, et al. A computer simulation study of the formation of liquid crystal nanodroplets from a homogeneous solution. J Chem Phys. 2007;126(4):044905. DOI:10.1063/1.2430710
  • Brown WM, Petersen MK, Plimpton SJ, et al. Liquid crystal nanodroplets in solution. J Chem Phys. 2009;130(4):044901. DOI:10.1063/1.3058435
  • Vanzo D, Ricci M, Berardi R, et al. Shape, chirality and internal order of freely suspended nematic nanodroplets. Soft Matter. 2012;8(47):11790–11800. DOI:10.1039/c2sm27114a
  • Vanzo D, Ricci M, Berardi R, et al. Wetting behaviour and contact angles anisotropy of nematic nanodroplets on flat surfaces. Soft Matter. 2016;12:1610–1620. DOI:10.1039/C5SM02179K
  • Bunning TJ, Natarajan LV, Tondiglia VP, et al. Holographic polymer-dispersed liquid crystals (h-pdlcs) 1. Annu Rev Mater Sci. 2000;30(1):83–115. DOI:10.1146/annurev.matsci.30.1.83
  • Dobrushin RL, Kotecky R, Shlosman S. Wulff construction: a global shape from local interaction. Vol. 104. Providence: American Mathematical Society; 1992.
  • Williams R. Two transitions in tangentially anchored nematic droplets. J Phys A Math Gen. 1986;19(16):3211–3222. DOI:10.1088/0305-4470/19/16/019
  • Prinsen P. van der Schoot P. Shape and director-field transformation of tactoids. Phys Rev E. 2003;68(2):021701. DOI:10.1103/PhysRevE.68.021701
  • Prinsen P. Van der Schoot P. Parity breaking in nematic tactoids. J Phys Condens Matter. 2004;16(49):8835.
  • Sunarso A, Tsuji T, Chono S. Gpu-accelerated molecular dynamics simulation for study of liquid crystalline flows. J Comput Phys. 2010;229(15):5486–5497. DOI:10.1016/j.jcp.2010.03.047
  • Sunarso A, Tsuji T, Chono S. Molecular dynamics simulation of backflow generation in nematic liquid crystals. Appl Phys Lett. 2008;93(24):244106. DOI:10.1063/1.3050111
  • Sunarso A, Tsuji T, Chono S. Three-dimensional molecular dynamics simulations of reorientation process and backflow generation in nematic liquid crystals under application of electric fields. J Appl Phys. 2011;110(4):044911. DOI:10.1063/1.3625248
  • Gettelfinger BT, Moreno-Razo JA, Koenig Jr GM Jr, et al. Flow induced deformation of defects around nanoparticles and nanodroplets suspended in liquid crystals. Soft Matter. 2010;6(5):896–901. DOI:10.1039/b912551e
  • Fukuda J, Yokoyama H. Stability of the director profile of a nematic liquid crystal around a spherical particle under an external field. Eur Phys J E. 2006;21(4):341–347. DOI:10.1140/epje/i2006-10072-6
  • Loudet J, Poulin P. Application of an electric field to colloidal particles suspended in a liquid-crystal solvent. Phys Rev Lett. 2001;87(16):165503. DOI:10.1103/PhysRevLett.87.165503
  • Tojo K, Furukawa A, Araki T, et al. Defect structures in nematic liquid crystals around charged particles. Eur Phys J E. 2009;30(1):55–64. DOI:10.1140/epje/i2009-10506-7
  • De Luca G, Rey A. Point and ring defects in nematics under capillary confinement. J Chem Phys. 2007;127(10):104902/1–104902/11. DOI:10.1063/1.2775451
  • Khayyatzadeh P, Fu F, Abukhdeir NM. Field-driven dynamics of nematic microcapillaries. Phys Rev E. 2015 Dec;92:062509. DOI:10.1103/PhysRevE.92.062509
  • Yan J, Rey AD. Texture formation in carbonaceous mesophase fibers. Phys Rev E. 2002 Feb;65(3):031713. DOI:10.1103/PhysRevE.65.031713
  • Bhattacharjee A, Menon GI, Adhikari R. Fluctuating dynamics of nematic liquid crystals using the stochastic method of lines. J Chem Phys. 2010;133(4):044112. DOI:10.1063/1.3455206
  • Abukhdeir NM, Soulé ER, Rey AD. Non-isothermal model for nematic spherulite growth. Langmuir. 2008;24(23):13605–13613. DOI:10.1021/la8022216
  • Wincure B, Rey A. Interfacial nematodynamics of heterogeneous curved isotropic-nematic moving fronts. J Chem Phys. 2006;124(24):244902(pages 13). DOI:10.1063/1.2206768
  • Wincure B, Rey A. Growth and structure of nematic spherulites under shallow thermal quenches. Continuum Mech Therm. 2007 Jun;19(1–2):37–58. DOI:10.1007/s00161-007-0043-z
  • Wincure B, Rey A. Nanoscale analysis of defect shedding from liquid crystal interfaces. Nano Lett. 2007;7(6):1474–1479. DOI:10.1021/nl0701408
  • Abukhdeir NM, Rey AD. Metastable nematic preordering in smectic liquid crystalline phase transitions. Macromolecules. 2009;42(12):3841–3844. DOI:10.1021/ma900796b
  • Soulé ER, Abukhdeir NM, Rey AD. Theory and computation of directional nematic phase ordering. ‎Phys Rev E (Statistical, Nonlinear, Soft Matter Physics). 2009; 79(2):021702(pages 12). DOI:10.1103/PhysRevE.79.021702
  • Mukherjee PK, Pleiner H, Brand HR. Simple landau model of the smectic-a-isotropic phase transition. Eur Phys J E. 2001;4:293–297. DOI:10.1007/s101890170111
  • Bechhoefer J, Löwen H, Tuckerman LS. Dynamical mechanism for the formation of metastable phases. Phys Rev Lett. 1991 Sep;67(10):1266–1269. DOI:10.1103/PhysRevLett.67.1266
  • Huisman BAH, Fasolino A. Influence of latent heat and thermal diffusion on the growth of nematic liquid crystal nuclei. ‎Phys Rev E (Statistical, Nonlinear, Soft Matter Physics). 2007; 76(2):021706(pages 7). DOI:10.1103/PhysRevE.76.021706
  • Kats E, Lebedev V. Fluctuational effects in the dynamics of liquid crystals. New York (NY): Springer; 1994.
  • Bhattacharjee AK. Distinct kinetic pathways for homogeneous nucleation in a time-dependent ginzburg-landau-de gennes theory of nematic fluids. Arxiv Preprint Arxiv. 2016;4.
  • Armas-Pérez JC, Londono-Hurtado A, Guzmán O, et al. Theoretically informed monte carlo simulation of liquid crystals by sampling of alignment-tensor fields. J Chem Phys. 2015;143(4):044107. DOI:10.1063/1.4926790
  • Forest MG, Zhou R, Wang Q. Kinetic structure simulations of nematic polymers in plane couette cells. ii: in-plane structure transitions. Multiscale Model Sim. 2005;4(4):1280–1304. DOI:10.1137/040618187
  • Yu H, Zhang P. A kinetic–hydrodynamic simulation of microstructure of liquid crystal polymers in plane shear flow. J Nonnewton Fluid Mech. 2007;141(2–3):116–127. DOI:10.1016/j.jnnfm.2006.09.005
  • Forest MG, Heidenreich S, Hess S, et al. Dynamic texture scaling of sheared nematic polymers in the large ericksen number limit. J Nonnewton Fluid Mech. 2010;165(13–14):687–697. DOI:10.1016/j.jnnfm.2010.03.003
  • Forest MG, Wang Q, Yang X. Lcp droplet dispersions: a two-phase, diffuse-interface kinetic theory and global droplet defect predictions. Soft Matter. 2012;8(37):9642–9660. DOI:10.1039/c2sm25512j
  • Noroozi N, Grecov D. Numerical simulation of flow and structure in nematic liquid crystalline materials between eccentric cylinders. J Nonnewton Fluid Mech. 2014;208–209:1–17. DOI:10.1016/j.jnnfm.2014.03.008
  • Fukuda J, Stark H, Yokoyama H. Friction drag of a spherical particle in a liquid crystal above the isotropic-nematic transition. Phys Rev E. 2005;72(2):021701. DOI:10.1103/PhysRevE.72.021701
  • Yoneya M, Fukuda JI, Yokoyama H, et al. Effect of a hydrodynamic flow on the orientation profiles of a nematic liquid crystal around a spherical particle. Mol Cryst Liq Cryst. 2005;435(1):75–735. DOI:10.1080/15421400590956009
  • Araki T, Tanaka H. Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line. Phys Rev Lett. 2006;97(12):127801. DOI:10.1103/PhysRevLett.97.127801
  • Araki T, Serra F, Tanaka H. Defect science and engineering of liquid crystals under geometrical frustration. Soft Matter. 2013;9(34):8107–8120. DOI:10.1039/c3sm50468a
  • Araki T, Tanaka H. Surface-sensitive particle selection by driving particles in a nematic solvent. J Phys Condens Matter. 2006;18(15):L193.
  • Araki T, Tanaka H. Dynamics of colloidal particles in soft matters. Prog Theor Phys Suppl. 2008;175:37–46. DOI:10.1143/PTPS.175.37
  • Araki T. Dynamic coupling between a multistable defect pattern and flow in nematic liquid crystals confined in a porous medium. Phys Rev Lett. 2012;109(25):257801. DOI:10.1103/PhysRevLett.109.257801
  • Khullar S, Zhou C, Feng JJ. Dynamic evolution of topological defects around drops and bubbles rising in a nematic liquid crystal. Phys Rev Lett. 2007;99(23):237802. DOI:10.1103/PhysRevLett.99.237802
  • Antipova A, Denniston C. Dynamics of a disc in a nematic liquid crystal. Soft Matter. 2016;12:1279–1294. DOI:10.1039/C5SM02333E
  • Rovner JB, Borgnia DS, Reich DH, et al. Elastic and hydrodynamic torques on a colloidal disk within a nematic liquid crystal. Phys Rev E. 2012 Oct;86:041702. DOI:10.1103/PhysRevE.86.041702
  • Callan-Jones AC, Pelcovits RA, Slavin VA, et al. Simulation and visualization of topological defects in nematic liquid crystals. Phys Rev E. 2006 Dec;74:061701. DOI:10.1103/PhysRevE.74.061701
  • Slavin V, Pelcovits RA, Loriot G, et al. Techniques for the visualization of topological defect behavior in nematic liquid crystals. IEEE Trans Vis Comput Graph. 2006;12(5):1323–1328. DOI:10.1109/TVCG.2006.182
  • Yang X, Forest MG, Mullins W, et al. Dynamic defect morphology and hydrodynamics of sheared nematic polymers in two space dimensions. J Rheol (1978-Present). 2009;53(3):589–615. DOI:10.1122/1.3089622
  • Čopar S, Porenta T, Žumer S. Visualisation methods for complex nematic fields. Liq Cryst. 2013;40(12):1759–1768. DOI:10.1080/02678292.2013.853109

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.