354
Views
9
CrossRef citations to date
0
Altmetric
Articles

Cholesteric gratings induced by electric field in mixtures of liquid crystal and novel chiral ionic liquid

ORCID Icon, , , &
Pages 911-923 | Received 12 Jun 2016, Accepted 26 Oct 2016, Published online: 14 Nov 2016

References

  • Williams R. Domains in liquid crystals. J Chem Phys. 1963;39:384–388. DOI:10.1063/1.1734257
  • Buka A. Domains in liquid crystals. Phys Scr. 1989;T25:114–117. DOI:10.1088/0031-8949/1989/T25/019
  • Helfrich W. Conduction‐induced alignment of nematic liquid crystals: basic model and stability considerations. J Chem Phys. 1969;51:4092–4105. DOI:10.1063/1.1672632
  • Petrov M, Keskinova E, Katranchev B. The electroconvection in the nematic liquid crystals with short range smectic C order. J Mol Liq. 2008;138:130–138. DOI:10.1016/j.molliq.2007.07.005
  • Bohatsch H, Stannarius R. Frequency-induced structure transition of nematic electroconvection in twist cells. Phys Rev E. 1999;60(5):5591–5599. DOI:10.1103/PhysRevE.60.5591
  • Kramer L, Pesch W. Convection instabilities in nematic liquid crystals. Annu Rev Fluid Mech. 1995;27:515–541. DOI:10.1146/annurev.fl.27.010195.002503
  • Rehberg I, Rasenat S, De La Torre Juarez M, et al. Thermally induced hydrodynamic fluctuations below the onset of electroconvection. Phys Rev Lett. 1991;67(5):596–600. DOI:10.1103/PhysRevLett.67.596
  • King PW. A two dimensional diffraction grating incorporating a variable grating mode (VGM) liquid crystal device (LCD). Holographic Systems, Components and Applications, 1989., Second International Conference on; Bath; 1989. p. 154–159.
  • Pucci G, Lysenko D, Provenzano C, et al. Patterns of electro-convection in planar-periodic nematic cells. Liq Cryst. 2016;43(2):216–221. DOI:10.1080/02678292.2015.1073381
  • Soffer BH, Margerum JD, Lackner AM, et al. Variable grating mode liquid crystal device for optical processing computing. Mol Cryst Liq Cryst. 1981;70:145–161. DOI:10.1080/00268948108073586
  • Buka A, Dressel B, Otowski W, et al. Electroconvection in nematic liquid crystals with positive dielectric and negative conductivity anisotropy. Phys Rev E. 2002;66:051713. DOI:10.1103/PhysRevE.66.051713
  • Xiang Y, Liu Y-K, Buka A, et al. Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal. Phys Rev E. 2014;89:012502. DOI:10.1103/PhysRevE.89.012502
  • Sackmann E, Meiboom E, Snyder LC, et al. On the structure of the liquid crystalline state of cholesterol derivatives. J Am Chem Soc. 1968;90(13):3567–3569. DOI:10.1021/ja01015a051
  • Van Sprang HA, Van De Venne JLM. Influence of the surface interaction on threshold values in the cholesteric-nematic phase transition. J Appl Phys. 1985;57(2):175–179. DOI:10.1063/1.334839
  • Wu JJ, Wu YS, Chen FC, et al. Formation of phase grating in planar aligned cholesteric liquid crystal film. Jpn J Appl Phys. 2002;41(11B):1318–1320. DOI:10.1143/JJAP.41.L1318
  • Hamdi R, Petriashvili G, De Santo MP, et al. Electrically controlled 1D and 2D cholesteric liquid crystal gratings. Mol Cryst Liq Cryst. 2012;553:97–102. DOI:10.1080/15421406.2011.609436
  • Lin CH, Chiang RH, Liu SH, et al. Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals. Opt Expr. 2012;20(24):26837–26844. DOI:10.1364/OE.20.026837
  • Gvozdovskyy I. Influence of the anchoring energy on jumps of the period of stripes in thin planar cholesteric layers under the alternating electric field. Liq Cryst. 2014;41(10):1495–1504. DOI:10.1080/02678292.2014.927930
  • Senyuk B, Smalyukh I, Lavrentovich O. Electrically-controlled two-dimensional gratings based on layers undulations in cholesteric liquid crystals. Proc SPIE. 2005;5936:59360W-1-9.
  • Subacius D, Shiyanovskii SV, Bos P, et al. Cholesteric gratings with field-controlled period. Appl Phys Lett. 1997;71(23):3323–3325. DOI:10.1063/1.120325
  • Jau HC, Lin TH, Chen YY, et al. Direction switching and beam steering of cholesteric liquid crystal gratings. Appl Phys Lett. 2012;100:131909. DOI:10.1063/1.3698384
  • Gvozdovskyy I, Yaroshchuck O, Serbina M, et al. Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring. Opt Expr. 2012;20(4):3499–3508. DOI:10.1364/OE.20.003499
  • Chilaya G. 6. Cholesteric liquid crystals: optics, electro-optics and photo-optics. In: Kitzerow HS, Bahr C, editors. Chirality of liquid crystals. New York: Springer-Verlag; 2001. p. 159–185.
  • Fuh AYG, Lin CH, Huang CY. Dynamic pattern formation and beam-steering characteristics of cholesteric gratings. Jap J Appl Phys. 2002;41(1R):211–218. DOI:10.1143/JJAP.41.211
  • Ryabchun A, Bobrovsky A, Stumpe J, et al. Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch. Adv Opt Mater. 2015;3:1273–1279. DOI:10.1002/adom.201500159
  • Belyakov VA, Kats EI, Palto SP. Temperature and field hysteresis of the pitch variations in thin planar layers of cholesterics. Mol Cryst Liq Cryst. 2004;410(1):229–238. DOI:10.1080/15421400490436025
  • Kiselev AD, Sluckin TJ. Twist of cholesteric liquid crystal cells: stability of helical structures and anchoring energy effects. Phys Rev E. 2005;71(3):031704-1-11. DOI:10.1103/PhysRevE.71.031704
  • Yoon HG, Roberts NW, Gleeson HF. An experimental investigation of discrete changes in pitch in a thin, planar chiral nematic device. Liq Cryst. 2006;33(04):503–510. DOI:10.1080/02678290600633501
  • Gaylord TK, Moraham MG. Analysis and applications of optical diffraction by gratings. Proc IEEE. 1985;73(5):894–937. DOI:10.1109/PROC.1985.13220
  • Chauvin Y, Olivier-Bourbigou H. Nonaqueous ionic liquids as reaction solvents. Chemtech. 1995;25:26–30.
  • Zhao H, Malhotra SV. Applications of ionic liquids in organic synthesis. Aldrichim Acta. 2002;35:75–83. DOI:10.1016/S0003-2670(01)01543-4
  • Olivier-Bourbigou H, Magna L. Ionic liquids: perspectives for organic and catalytic reactions. J Mol Catal A. 2002;182:419–437. DOI:10.1016/S1381-1169(01)00465-4
  • Jain N, Kumar A, Chauhan S, et al. Chemical and biochemical transformations in ionic liquids. Tetrahedron. 2005;61:1015–1060. DOI:10.1016/j.tet.2004.10.070
  • Yoshida J, Watanabe G, Kakizawa K, et al. Tris(β-diketonato) Ru(III) complexes as chiral dopants for nematic liquid crystals: the effect of the molecular structure on the helical twisting power. Inorg Chem. 2013;52:11042–11050. DOI:10.1021/ic401240f
  • Yang S, Wang B, Cui D, et al. Stereochemical control of nonamphiphilic lyotropic liquid crystals: chiral nematic phase of assemblies separated by six nanometers of aqueous solvents. J Phys Chem B. 2013;117:7133–7143. DOI:10.1021/jp401382h
  • Eelkema R, Pollard MM, Katsonis N, et al. Rotational reorganization of doped cholesteric liquid crystalline films. J Am Chem Soc. 2006;128:14397–14407. DOI:10.1021/ja065334o
  • Bosco A, Jongejan MGM, Eelkema R, et al. Photoinduced reorganization of motor-doped chiral liquid crystals: bridging molecular isomerization and texture rotation. J Am Chem Soc. 2008;130:14615–14624. DOI:10.1021/ja8039629
  • Payagala T, Armstrong DW. Chiral ionic liquids: a compendium of syntheses and applications (2005-2012). Chirality. 2012;24:17–53. DOI:10.1002/chir.v24.1
  • Yu S, Lindeman S, Tran CD. Chiral ionic liquids: synthesis, properties, and enantiomeric recognition. J Org Chem. 2008;73:2576–2591. DOI:10.1021/jo702368t
  • Hu W, Zhang L, Cao H, et al. Electro-optical study of chiral nematic liquid crystal/chiral ionic liquid composites with electrically controllable selective reflection characteristics. Phys Chem Chem Phys. 2010;12:2632–2638. DOI:10.1039/b918884c
  • Broer DJ, Lub J, Mol GN. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature. 1995;378:467–469. DOI:10.1038/378467a0
  • Pernak J, Feder-Kubis J. Synthesis and properties of chiral ammonium-based ionic liquids. Chem Eur J. 2005;11:4441–4449. DOI:10.1002/chem.200500026
  • Pernak J, Feder-Kubis J, Cieniecka-Rosłonkiewicz A, et al. Synthesis and properties of chiral imidazolium ionic liquids with a (1R,2S,5R)-(−)-menthoxymethyl substituent. New J Chem. 2007;31:879–892. DOI:10.1039/B616215K
  • Reuter M, Vieweg N, Fischer BM, et al. Highly birefringent, low-loss liquid crystals for terahertz applications. APL Mater. 2013;1:1. DOI:10.1063/1.4808244
  • Nowinowski-Kruszelnicki E, Kedzierski J, Raszewski Z, et al. High birefringence liquid crystal mixtures for electro-optical devices. Opt Appl. 2012;XLII(1):167–180.
  • Yao IA, Lai YC, Chen SH. Relaxation of a field-unwound cholesteric liquid crystal. Phys Rev E. 2004;70:051705-1-5. DOI:10.1103/PhysRevE.70.051705

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.