116
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

The role of the anchoring conditions in the electrorheological behaviour of a nematic constrained by two coaxial cylinders and submitted by a pressure drop

&
Pages 996-1006 | Received 21 Jul 2016, Accepted 30 Oct 2016, Published online: 28 Nov 2016

References

  • Hao T. Electrorehological fluids: the non-aqueous suspensions. Cambridge (MA): Elsevier; 2005.
  • Růžička M. Electrorheological fluids: modeling and mathematical theory. Berlin: Springer; 2000.
  • Wen W, Huang X, Sheng P. Electrorheological fluids: structures and mechanisms. Soft Matter. 2008;4:200–210. DOI:10.1039/B710948M
  • Phulé PP, Ginder JM. The materials science of field-responsive fluids. MRS Bull. 1998;23(8):19–22. DOI:10.1557/S0883769400030761
  • Bar-Cohen Y. Electroactive polymer (EAP) actuators as artificial muscles: reality, potential and challenges. Washington (DC): SPIE Press; 2004.
  • Taylor PM, Hosseini-Sianaki A, Varley CJ. An electrorheological fluid-based tactile array for virtual environments. In: Proceedings of the 1996 IEEE International Conference on Robotics and Automation; 1996 Apr; Minneapolis (MN); 1996.
  • Dhar J, Bandopadhyay A, Chakraborty S. Taylor-Couette flow of electrorheological fluids under electrical double layer phenomenon. J Non-Newtonian Fluid Mech. 2015;223:165–175. DOI:10.1016/j.jnnfm.2015.07.001
  • Stephen MJ, Straley JP. Physics of liquid crystals. Rev Mod Phys. 1974;46:617–704. DOI:10.1103/RevModPhys.46.617
  • Ericksen JL. Inequalities in liquid crystal theory. Phys Fluids. 1966;9:1205. DOI:10.1063/1.1761821
  • Stewart IW. The static and dynamic continuum theory of liquid crystals: a mathematical introduction. London: Taylor & Francis; 2004.
  • Landau LD, Lifshitz EM. Fluid mechanics. 2nd ed. Oxford: Pergamon; 2003.
  • Kleman M, Lavrentovich OD. Soft matter physics: an introduction. New York (NY): Springer-Verlag; 2003.
  • Khoo I. Liquid crystals. Hoboken (NJ): Wiley; 2007.
  • Batista VMO, Blow ML, Telo da Gama MM. The effect of anchoring on the nematic flow in channels. Soft Matter. 2015;11(23):4674–4685. DOI:10.1039/C5SM00249D
  • Yednak CAR, Teixeira de Souza R, Lenzi GG, et al. Molecular orientation of a nematic between concentric cylinders: weak anchoring situation. Mol Cryst Liq Cryst. 2010;526:82–92. DOI:10.1080/15421406.2010.485076
  • Ledney MF, Tarnavskyy OS. Freedericksz transition in a nematic cell with periodic anchoring energy in electric field. Crystallogr Rep. 2015;60(2):280–285. DOI:10.1134/S1063774515020169
  • Olivero D, Evangelista LR, Barbero G. External electric-field effect on nematic anchoring energy. Phys Rev E. 2002;65(3):031721. DOI:10.1103/PhysRevE.65.031721
  • Leslie FM. Some constitutive equations for anisotropic fluids. Q J Mech Appl Math. 1966;19(3):357–370. DOI:10.1093/qjmam/19.3.357
  • Ericksen JL. Conservation laws for liquid crystals. J Rheol. 1961;5:23–34. DOI:10.1122/1.548883
  • Atkin RJ, Leslie FM. Couette flow of nematic liquid crystals. Q J Mech Appl Math. 1970;23:3–24. DOI:10.1093/qjmam/23.2.3
  • Rey AD. Orientational transition in radial flow of a nematic liquid. J Non-Newtonian Fluid Mech. 1991;40(2):177–200. DOI:10.1016/0377-0257(91)85012-8
  • Van Horn BL, Winter HH. Dynamics of shear aligning of nematic liquid crystal monodomains. Rheol Acta. 2000;39:294–300. DOI:10.1007/s003970000111
  • Amar MB, Cummings LJ. Fingering instabilities in driven thin nematic films. Phys Fluids. 2001;13:1160–1166. DOI:10.1063/1.1359748
  • Lima LRP, Rey AD. Poiseuille flow of Leslie-Ericksen discotic liquid crystals: solution multiplicity, multistability, and non-Newtonian rheology. J Non-Newtonian Fluid Mech. 2003;110:103–142. DOI:10.1016/S0377-0257(03)00006-5
  • Noroozi N, Grecov D. Flow modelling and rheological characterization of nematic liquid crystals between concentric cylinders. Liq Cryst. 2013;40(7):871–883. DOI:10.1080/02678292.2013.792127
  • Barbero G, Evangelista LR. Adsortion phenomena and anchoring energy in nematic liquid crystals. Boca Raton (FL): Taylor & Francis; 2006.
  • Woltman SJ, Crawford GP, Jay GD. Liquid crystals: frontiers in biomedical applications. Singapore: World Scientific; 2007.
  • Mendoza C, Corella A, Reyes JA. Electrorheological effect and directional non-Newtonian behavior in a nematic capillary subjected to a pressure gradient. Phys Rev E. 2008;77:011706. DOI:10.1103/PhysRevE.77.011706
  • Carlsson T. Theoretical investigation of the shear flow of nematic liquid crystals with the Leslie viscosity α3>0: hydrodynamic analogue of first order phase transitions. Mol Cryst Liq Cryst. 1984;104:307–334. DOI:10.1080/00268948408070434
  • Yang D, Wu S. Fundamentals of liquid crystals devices. West Sussex: Wiley; 2006.
  • Rapini A, Papoular M. Distorsion d’une lamelle nématique sous champ magnétique conditions d’ancrage aux parois. J Phys Colloq. 1969;30:C4–C54.
  • Crawford GP, Allender DW, Doane JW. Surface elastic and molecular-anchoring properties of nematic liquid crystals confined to cylindrical cavities. Phys Rev A. 1992;45:8693–8708. DOI:10.1103/PhysRevA.45.8693
  • Blinov LM, Chigrinov VG. Electrooptic effects in liquid crystal materials. New York (NY): Springer-Verlag; 1994.
  • Monastyrsky MI. Topology in condensed matter. Berlin: Springer-Verlag; 2006.
  • Yokoyama H, van Sprang HA. A novel method for determining the anchoring energy function at a nematic liquid crystal wall interface from director distortions at high fields. J Appl Phys. 1985;57:4520–4526. DOI:10.1063/1.335352
  • Uchida T. Surface alignment of liquid crystals. In: Bahadur B, editor. Liquid crystals: applications and uses. Vol. 3. Singapore: World Scientific; 1990.
  • Press WH, Teukolsky SA, Vetterling WT, et al. Numerical recipes: the art of scientific computing. New York (NY): Cambridge University Press; 2007.
  • Reyes JA, Reyes-Avendaño JA, Halevi P. Electrical tuning of photonic crystals infilled with liquid crystals. Opt Commun. 2008;281:2535–2547. DOI:10.1016/j.optcom.2007.12.073
  • Coleman BD. On the loss of regularity of shearing flows of viscoelastic fluids. In: Keyfitz BL, Shearern M, editors. Nonlinear evolution equations that change type. New York (NY): Springer-Verlag; 1990.
  • Truesdell C, Noll W. The non-linear field theories of mechanics. Berlin: Springer-Verlag; 2004.
  • Anderson TG, Mema E, Kondic L, et al. Transitions in Poiseuille flow of nematic liquid crystal. Int J Nonlinear Mech. 2015;75:15–21. DOI:10.1016/j.ijnonlinmec.2015.04.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.