201
Views
3
CrossRef citations to date
0
Altmetric
Article

Temperature-dependent optical band structure and defect mode in a one-dimensional photonic liquid crystal

&
Pages 1620-1631 | Received 20 Nov 2016, Accepted 30 Jan 2017, Published online: 22 Feb 2017

References

  • Yeh P. Optical waves in layered media. New York: Wiley; 1988.
  • Joannopoulos JD, Villeneuve PR, Fan S. Photonic crystals: putting a new twist on light. Nature. 1997;386:143–149.
  • Joannopoulos JD, Johnson SG, Winn JN, et al. Photonic crystals: moulding the flow of light. Princeton: Princeton University Press; 2008.
  • Chuang SL. Physics of photonic devices. New Jersey: John Wiley Sons; 2009.
  • De Gennes PG, Prost J. The Physics of liquid crystals. Oxford: Clarendon Press; 1993.
  • Chandrasekhar S. Liquid crystals. Cambridge: Cambridge University Press; 2001.
  • Ha NY, Ohtsuka Y, Jeong SM, et al. Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals. Nat Mat. 2008;7:43–47.
  • Nascimento EM, De Oliveira IN, Lyra ML. Reflection chromaticity of multilayered structures incorporating cholesteric liquid crystals. Appl Phys. 2008;104:1–5.
  • He Z, Ye Z, Cui Q, et al. Reflection chromaticity of cholesteric liquid crystals with sandwiched periodical isotropic defect layers. Opt Commun. 2011;284:4022–4027.
  • Harutyunyana MZ, Gevorgyan AH, Matinyan GK. Optical properties of a stack of layers of a cholesteric liquid crystal and an isotropic medium. Opt Spectrosc. 2013;114:601–613.
  • Gevorgyan AH. Optical properties of a stack of cholesteric liquid crystal and isotropic medium layers. Jetf. 2015;121:1096–1103.
  • Wang J, Shi S, Wang B. The fabrication of polymer dispersed liquid crystal based on SiO2 photonic crystal template. Liq Cryst. 2015;42:1206–1212.
  • Busch K, John S. Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum. Phys Rev Lett. 1999;83:967–970.
  • Yoshino K, Shimoda Y, Kawagishi Y, et al. Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal. Appl Phys Lett. 1999;75:932–934.
  • Leonard SW, Mondia JP, Van Driel HM, et al. Tunable two-dimensional photonic crystals using liquid-crystal infiltration. Phys Rev B. 2000;61:R2389–R2392.
  • Schuller C, Klopf F, Reithmaier JP, et al. Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals. Appl Phys Lett. 2003;82:2767–2769.
  • Larsen TT, Bjarklev A, Hermann DS, et al. Optical devices based on liquid crystal photonic bandgap fibres. Opt Express. 2003;11:2589–2596.
  • Weiss SM, Ouyang H, Zhang J, et al. Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals. Opt Express. 2005;13:1090–1097.
  • Huang Y, Zhou Y, Doyle C, et al. Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility. Opt Express. 2006;14:1236–1242.
  • Yablonovitch E, Gmitter TJ, Meade RD, et al. Donor and acceptor modes in photonic band structure, Phys. Rev Lett. 1991;67:3380–3383.
  • Avendaño CG, Ponti S, Reyes JA, et al. Multiplet structure of the defect modes in 1D helical photonic crystals with twist defects. J Phys A Math Gen. 2005;38:8821–8840.
  • Gevorgyan AH. Tunable reflectance of a two-defect-layer cholesteric liquid crystal. Phys Rev E. 2011;83:1–12.
  • Gevorgyan AH, Kocharian AN, Vardanyan GA. Circular dichroism and absorption in a finite cholesteric liquid crystal layer with an isotropic defect layer inside. Liq Cryst. 2016;43:448–461.
  • Nemec H, Kuzel P, Duvillaret L, et al. Highly tunable photonic crystal filter for the terahertz range. Opt Lett. 2005;30:549–551.
  • Kumar A, Kumar V, Suthar B, et al. Wide range temperature sensors based on one-dimensional photonic crystals with a single defect. Int J Microwave Sci Technol. 2012;2012:1–5.
  • Malik JV, Kumar V, Kumar A, et al. Thermal tuning of defect modes in Si-based one-dimensional photonic crystal with a defect. Int J Eng Innovative Technol (IJEIT). 2012;2:347–351.
  • Wu S-T. Birefringence dispersions of liquid crystals. Phys Rev. 1986;33:1270–1274.
  • Li J, Wu S-T, Brugioni S, et al. Infrared refractive indices of liquid crystals. J Appl Phys. 2005;97:073501.
  • Li J, Wu S-T. Extended Cauchy equations for the refractive indices of liquid crystals. J Appl Phys. 2004;95:896–901.
  • Li HH. Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives. J Phys Chem Ref Data. 1984;13:103–150.
  • Debenham M. Refractive indices of zinc sulfide in the 0.405-13 m wavelength range. Appl Opt. 1984;23:2238–2239.
  • Klein CA. Room-temperature dispersion equations for cubic zinc sulfide. Appl Opt. 1986;25:1873–1875.
  • Gruler H, Jones F. Thermal expansion and specific heat of a nematic liquid crystal. J Phys Coll. 1975;36:C1-53-C1-54.
  • Roberts RB, White GK, Sabine TM. Thermal expansion Of Zinc Sulfide: 300-1300 K. Aust J Phys. 1981;34:701–706.
  • Berreman DW, Scheffer TJ. Bragg reflection of light from single-domain cholesteric liquid-crystal films. Phys Rev Lett. 1970;25:577–581.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.