1,468
Views
22
CrossRef citations to date
0
Altmetric
Invited Article

Revisiting (hydroxypropyl) cellulose (HPC)/water liquid crystalline system

, &
Pages 2108-2120 | Received 27 Mar 2017, Accepted 26 Apr 2017, Published online: 19 May 2017

References

  • Klug ED. Hydroxypropylcellulose. In: Bikales NM, editor. Encyclopedia of polymer science and technology. Vol. 15. New York (NY): Wiley-Interscience; 1971. p. 307.
  • Werbowyj RS, Gray DG. Liquid crystalline structure in aqueous hydroxypropyl cellulose solutions. Mol Cryst Liq Cryst. 1976;34:97–103. DOI:10.1080/15421407608083894
  • Werbowyj RS, Gray DG. Ordered phase formation in concentrated hydroxpropylcellulose solutions. Macromolecules. 1980;13:69–73. DOI:10.1021/ma60073a014
  • Fortin S, Charlet G. Phase diagram of aqueous solutions of (hydroxypropyl)cellulose. Macromolecules. 1989;22:2286–2292. DOI:10.1021/ma00195a050
  • Guido S. Phase behavior of aqueous solutions of hydroxypropyl cellulose. Macromolecules. 1995;28:4530–4539. DOI:10.1021/ma00117a023
  • Gray DG, Mu X. Chiral nematic structure of cellulose nanocrystal suspensions and films; polarized light and atomic force microscopy. Materials. 2015;8:7873–7888. DOI:10.3390/ma8115427
  • Werbowyj RS, Gray DG. Optical properties of (hydroxypropyl) cellulose liquid crystals: cholesteric pitch and polymer concentration. Macromolecules. 1984;17:1512–1520. DOI:10.1021/ma00138a016
  • Fried F, Gilli JM, Sixou P. The cholesteric pitch in lyotropic solutions of a semi-rigid macromolecule: hydroxypropyl-cellulose. Mol Cryst Liq Cryst. 1983;98:209–221. DOI:10.1080/00268948308073476
  • Vogt U, Zugenmaier P. Structural models for some liquid crystalline cellulose derivatives. Ber Bunsenges Phys Chem. 1985;89:1217-1224. DOI:10.1002/bbpc.19850891120
  • Gray DG, Harkness BR. Chiral nematic mesophases of lyotropic and thermotropic cellulose derivatives. In: Shibaev V, Lam L, editors. Liquid crystalline and mesomorphic polymers. New York (NY): Springer; 1994. p. 298–323.
  • Nishio Y, Sato J, Sugimura K. Liquid crystals of cellulosics: fascinating ordered structures for the design of functional material systems. Adv Polym Sci. 2016;271:241–286. DOI:10.1007/12_2015_308
  • Revol J-F, Bradford H, Giasson J, et al. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol. 1992;14:170–172. DOI:10.1016/S0141-8130(05)80008-X
  • Majoinen J, Kontturi E, Ikkala O, et al. SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose. 2012;19:1599–1605. DOI:10.1007/s10570-012-9733-1
  • Gao J, Haidar G, Lu X, et al. Self-Association of Hydroxypropylcellulose in Water. Macromolecules. 2001;34:2242–2247. DOI:10.1021/ma001631g
  • Yang YS, Zhou Y, Chiang FBY, et al. Temperature-responsive hydroxypropylcellulose based thermochromic material and its smart window application PRIVATE “<INPUT NAME=\“C6RA12454B\” TITLE=\“Select\” TYPE=\“checkbox\” VALUE=\“C6RA12454B\“>” MACROBUTTON HTMLDirect. RSC Adv. 2016;6:61449–61453. DOI:10.1039/C6RA12454B
  • Chang SA, Gray DG. The surface tension of aqueous hydroxypropyl cellulose solutions. J Coll Interface Sci. 1978;67:255–265. DOI:10.1016/0021-9797(78)90010-3
  • Charlet G, Gray DG. Chiroptical filters from aqueous (hydroxypropyl) cellulose liquid crystals. J Appl Polym Sci. 1989;37:2517–2527. DOI:10.1002/app.1989.070370905
  • Guido S, Grizzuti N. Phase separation effects in the rheology of aqueous solutions of hydroxypropylcellulose. Rheol Acta. 1995;34:137–146. DOI:10.1007/BF00398433
  • Ernst B, Navard P. Band textures in mesomorphic (hydroxypropyl)cellulose. Macromolecules. 1989;22:1419–1422. DOI:10.1021/ma00193a069
  • Charlet G, Gray DG. Solid cholesteric films cast from aqueous (hydroxypropyl)cellulose. Macromolecules. 1987;20:33–37. DOI:10.1021/ma00167a007
  • Ritcey AM, Charlet G, Gray DG. Effect of residual linear orientation on the optical properties of cholesteric films. Can J Chem. 1988;66:2229–2233. DOI:10.1139/v88-354
  • Fischer H, Murray M, Keller A, et al. On the phase diagram of the system hydroxypropylcellulose-water. J Mat Sci. 1995;30:4623–4627. DOI:10.1007/BF01153071
  • Godinho MH. Contribuição para o estudo dos polímeros líquidos cristalinos derivados da celulose [dissertation]. Lisbon (Portugal): New University of Lisbon at Lisbon; 1992.
  • Nishio Y, Chiba R, Miyashita Y, et al. Salt addition effects on mesophase structure and optical properties of aqueous hydroxypropyl cellulose solutions. Polym J. 2002;34:149–157. DOI:10.1295/polymj.34.149
  • Godinho MH, Van Der Klink JJ, Martins AF. Shear-history dependent ‘equilibrium’states of liquid-crystalline hydroxypropylcellulose solutions detected by rheo-nuclear magnetic resonance. J Phys-Condens Mat. 2003;15:5461–5467. DOI:10.1088/0953-8984/15/32/307
  • Geng Y, Almeida PL, Feio GM, et al. Water-based cellulose liquid crystal system investigated by rheo-NMR. Macromolecules. 2013;46:4296–4302. DOI:10.1021/ma400601b
  • Godinho MH, Pieranski P, Sotta P. Hygroscopic study of hydroxypropylcellulose. Eur Phys J E. 2016;39:E89. DOI:10.1140/epje/i2016-16089-2
  • Pieranski P. New phenomena and a new lyotropic phase detected by isoplethal and hygroscopic methods. J Phys-Condens Mat. 2005;17:S3333–S3339. DOI:10.1088/0953-8984/17/45/019
  • Cifferi A. Ultra-high-modulus fibers from solution spinning. Polym Eng Sci. 1975;15:191–198. DOI:10.1002/pen.760150311
  • Samuels RJ. Solid-state characterization of the structure and deformation behavior of water-soluble hydroxypropylcellulose. J Polym Sci. 1969;7:1197–1258. DOI:10.1002/pol.1969.160070705
  • Luo Z, Wang A, Wang C, et al. Liquid crystalline phase behavior and fiber spinning of cellulose/ionic liquid/halloysite nanotubes dispersions. J Mater Chem A. 2014;2:7327–7336. DOI:10.1039/C4TA00225C
  • Ritcey AM, Gray DG. Optical rotatory dispersion from liquid crystalline solutions and films of (hydroxypropyl)cellulose. Liq Cryst. 1989;6(6):717–726. DOI:10.1080/02678298908029114
  • De Vries H. Rotatory power and other optical properties of certain liquid crystals. Acta Crystallogr. 1951;4:219–226. DOI:10.1107/S0365110X51000751
  • Thomas A, Antonietti M. Silica nanocasting of simple cellulose derivatives: towards chiral pore systems with long-range order and chiral optical coatings. Adv Funct Mater. 2003;13(10):763–766. DOI:10.1002/adfm.200304383
  • Figueirinhas JL, Almeida PL, Godinho MH. Electro-optical properties of cellulose derivative composites. In: Dumitriu S, editor. Polysaccharides: structural diversity and functional versatility (2nd edition). New York (NY): CRC Press; 2004. p. 1123–1139.
  • Godinho MH, Fonseca JG, Ribeiro AC, et al. Atomic force microscopy study of hydroxypropylcellulose films prepared from liquid crystalline aqueous solutions. Macromolecules. 2002;35:5932–5936. DOI:10.1021/ma0118769
  • Godinho MH, Figueirinhas JL, Martins AF. Novel PDLC type display based on cellulose derivatives. Liq Cryst. 1996;20:373–376. DOI:10.1080/02678299608032047
  • Elliott A, Ambrose EJ. Evidence of chain folding in polypeptides and proteins. Discuss Faraday Soc. 1950;9:246–251. DOI:10.1039/DF9500900246
  • Nishio Y, Yamane T, Takahashi T. Morphological studies of liquid-crystalline cellulose derivatives. II. hydroxypropyl cellulose films prepared from liquid-crystalline aqueous solutions. J Polym Sci Pol Phys. 1985;23:1053–1064. DOI:10.1002/pol.1985.180230515
  • Patnaik SS, Bunning TJ, Adams WW, et al. Atomic force microscopy and high-resolution scanning electron microscopy study of the banded surface morphology of hydroxypropyl cellulose thin films. Macromolecules. 1995;28:393–395. DOI:10.1021/ma00105a058
  • Marsano E, Carpaneto L, Ciferri A. Formation of a banded texture in solutions of liquid crystalline polymers: 1. Hydroxypropylcellulose in H2O. Mol Cryst Liq Cryst. 1988;158:267–278. DOI:10.1080/00268948808076146
  • Fernandes SN, Geng Y, Vignolini S, et al. Structural color and iridescence in transparent sheared cellulosic films. Macromol Chem Physic. 2013;214:25–32. DOI:10.1002/macp.201200351
  • Wang J, Labes MM. Control of the anisotropic mechanical properties of liquid crystal polymer films by variations in their banded texture. Macromolecules. 1992;25:5790–5793. DOI:10.1021/ma00047a034
  • Geng Y, Almeida PL, Fernandes SN, et al. A cellulose liquid crystal motor: a steam engine of the second kind. Sci Rep. 2013;3:1028. DOI:10.1038/srep01028
  • Mori N, Morimoto M, Nakamura K. Hydroxypropylcellulose films as alignment layers for liquid crystals. Macromolecules. 1999;32:1488–1492. DOI:10.1021/ma981531z
  • Berreman DW. Solid surface shape and the alignment of an adjacent nematic liquid crystal. Phys Rev Lett. 1972;28:1683–1686. DOI:10.1103/PhysRevLett.28.1683
  • Sebastião PJ, Cruz C, Pires D, et al. Anisotropic hydroxypropylcellulose films as alignment layers of a bistable ferroelectric device. Liq Cryst. 2002;29(12):1491–1495. DOI:10.1080/0267829021000034835
  • Ding J, Feng J, Yang Y. Sinusoidal supermolecular structure of band textures in a presheared hydroxypropyl cellulose film. Polym J. 1995;27(11):1132–1138. DOI:10.1295/polymj.27.1132
  • Fonseca JG, Godinho MH, Ribeiro AC. Anchoring properties of a nematic liquid crystal on anisotropic hydroxypropylcellulose films. Liq Cryst. 2005;32(7):913–919. DOI:10.1080/02678290500181791

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.